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PREFACE

This volume contains the selected manuscripts of the papers presented at the Second
IDMME Conference on ‘‘Integrated Design and Manufacturing in Mechanical
Engineering”, held in Compiégne, France, at the University of Technology of
Compiegne, May 27-29, 1998.

The purpose of the Conference was to present and discuss topics dealing with the
optimization of product design and manufacturing processes with particular attention to
(1) the analysis and optimum design of mechanical parts and mechanisms (2) the
modeling of forming processes (3) the development of computer aided manufacturing
tools (4) the methodological aspects of integrated design and manufacturing in adapted
technical and human environments.

The initiative of the conference and the organization thereof is mainly due to the
efforts of the french PRIMECA group (Pool of Computer Resources for Mechanics).
The international Institution for Production Engineering Research (C.LR.P.) was
helpful to attract international participants.

The conference brought together three hundred and twenty worldwide participants.
Hundred and thirty two papers were presented in oral or poster sessions and included in
the proceedings in four volumes given to the participants. Four invited lectures were
presented:

1. Integrated design and manufacturing applied to aerospace structures
by Didier Guedra-Degeorges from Aerospatiale, Suresnes, France
2. Engineering Design: management of information and uncertainty
by Professor Chris Mac-Mahon, University of Bristol, UK
3. Adaptative topology and shape optimization
by Professor Ekkehard Ramm, University of Stuttgart, Germany
4. The next-generation manufacturing research: a North-American perspective
by Professor Clement Fortin, Ecole Polytechnique, Montreal, Canada
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This book contains eighty papers selected by the International Scientific Committee

and the PRIMECA Scientific committee :

Chairman: J.L. Batoz (France)
Co-chairmen: P. Chedmail (France) G. Cognet (France)
D. Dornfeld (USA) C. Fortin (Canada)

International Scientific Members:

J. Angeles (Canada) H. Hagen H. (Germany) S.H. Such (Korea)

P. Bettess (UK) H.I.J. Kals (The Netherlands) S. Tichkiewitch (France)
J.C. Bocquet (France) F. Kimura (Japan) M. Touratier (France)

P. Bourdet (France) T. Kjellberg (Sweden) H. Van Brussel (Belgium)
A. Clément (France) F. Le Maitre (France) M. Véron (France)

Y. Corvez (France) R. Soenen (France)

Primeca Scientific Members:

J. C. Bocquet J.C. (EC Paris)  G. Degallaix (EC Lille) B. Peseux (EC Nantes)

C. Bonthoux C. (IFMA) H. Gachon (ENSAM) D. Play (INSA Lyon)
J.L. Caenen (Mines de Douai) J. Guillot (INSA Toulouse) G. Ris G. (AIP Nancy)
J.M. Castelain (ENSIMEV) P. Orsero (UTC) M. Tollenaere (INPG)
P. Clozel (EC Lyon) J. P. Pelle (ENS Cachan)

The above specialists cover a large spectrum in computer science applied to
analysis, design and fabrication in mechanical engineering problems.

The third IDMME Conference will take place in Montreal, Québec, Canada on May
17-19, 2000.

The editors, the scientific and organizing committees hope that they contributed to
the development of the challenging research domain of Integrated Design and
Manufacturing in Mechanical Engineering.

The editors
J.L. Batoz, P. Chedmail, G. Cognet, C. Fortin
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INTRODUCTION

This book is devoted to the optimization of product design and manufacturing. 1t
contains selected and carefully composed articles based on presentations given at the
IDMME conference held in Compig¢gne University of Technology, France in 1998.
Their authors are all involved in cutting-edge research in their respective fields of
specialization.

The integration of manufacturing constraints and their optimization in the design
process is becoming more and more widespread in the development of mechanical
products or systems. There is a clear industrial need for these kinds of methodologies.
This class of problems belongs to the problematic of Concurrent Engineering which is
the object of many academic and industrial projects in Europe (through the ESPRIT and
BRITE-EURAM projects particularly) and all over the world.

Important - but still unsolved - problems are related to the definition of design
processes, the choice of optimal manufacturing processes and their integration through
coherent methodologies in adapted environments. In the same time, different aspects of
the problem have to be explored :

- the representation of the products and their properties,

- the modeling of the processes,

- the enhancement of the elementary design activities supported by classical CAD-
CAM systems.

Three main topics are addressed in this book:

1. Analysis and optimization of mechanical parts and products. In the first chapter,
examples dealing with structural analysis of mechanical parts describe the
complexity of the activity of concurrent engineering. These examples demonstrate
the actual possibilities to simultaneously take into account thermal and mechanical
constraints (p. 11), very complex phenomena which are associated to the crash of
vehicles (pp. 19 and 51) or to gearboxes functioning (p. 59). The second chapter is
devoted to some aspects of the optimal design of mechanical structures. Apart from
the classical shape optimization techniques (pp. 101 and 109), it appears clearly
that topological optimization techniques (pp. 117 and 133) are an alternative for the
research of new solutions. In the same time, global approaches (pp. 85, 93 and 125)
are a potential solution when there exist many local minima of the objective
function. The third chapter is dedicated to the problem of the integration of the
finite element solvers within CAD systems. A key point in this domain is to get a
fluent “go-back” process between the numerical mockup of the product and the
finite element model (pp. 151, 159 and 167). This goes through the development of
efficient automatic meshing algorithms (pp. 143 and 191), new geometric tools for
representing complex objects (pp. 167, 183, 199 and 207). The kinematics models
are studied in chapter 4 about modeling and synthesis of mechanisms. Out of the
classical problem of the analysis of mechanisms (pp. 217 and 265), it becomes
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clear that mechanisms synthesis - from a dimensional (pp. 225, 233 and 249) or a
topological point of view (pp. 241 and 257) - is a today challenge for industrial
purpose. This appears after a long period of academic researches which led to
practical limitations due to computers limitations.

2. Analysis and optimization for production and manufacturing systems. In this topic,
the authors study the complementary aspect of the design process, i.e. the
manufacturing and production processes (machining, stamping, clinching, age
creep forming, ...). Chapter 5 is related to the optimization of forming processes.
Taking into account the complex mechanical phenomena (pp. 275, 283, 323 and
331), it becomes possible to develop some optimization techniques applied to these
processes (pp. 299, 307 and 315). The object of chapter 6 is the modeling for
control and measurement (pp. 341, 349, 365, 405), and tolerancing (pp. 357, 373,
381 and 389). This last subject clearly interacts with functional and structural views
in the design process (p. 397). In chapter 7, design and manufacturing integration
goes through off line programming (pp. 415, 431, 455 and 471) and the optimal
definition of parameters for machining (pp. 423, 439, 447 and 465).

3. Methodological aspects of integrated design and manufacturing. The two above
topics are clearly complementary. Moreover they have to be integrated as much as
possible. The new methodologies based on the management of fuzzy information
(pp. 481) and know-how (p. 569), multi-model (pp. 521, 529, 553 and 569) and
constrained-based approaches (p. 513) are presented in chapter 8. Presentations on
design with new communication tools (p. 577) and new methodologies (pp. 489,
545 and 561) complete this chapter. Chapter 9 is related to computer aided
manufacturing : cost criteria are central in this domain (pp. 595 and 603).
Otherwise, modeling of the process becomes possible with multi-agent approach (p.
611). It may include dynamical aspects of the process (pp. 619 and 627).

Some training applications are finally presented in the domains of collaborative
design or manufacturing (pp. 585 and 651).

By the end, apart from giving a thorough theoretical background, a very important
theme is the relation between research and industrial applications.

We hope that this book will be of interest for engineers, researchers and Ph.D.
students who are involved in the optimization of design and manufacturing processes. It
will be a mine of examples and ideas, and we wish that it will contribute to the
improvement and the development of concurrent engineering.

The editors
J.L. Batoz, P. Chedmail, G. Cognet, C. Fortin
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Abstract

Spreading entire optical access networks to connect business customers requires the
mechanical properties of composite optical fibre cables to be mastered and their
installation in ducts to be optimized. In this context, FRANCE TELECOM is designing
new cable-laying tools. One of these techniques, called pushing, consists in applying an
axial compressive load to insert cables into underground ducts. However, during this
process, the cable can buckle into sinusoidal or helical spatial modes. A life-sized
experiment test bench has been produced at the CNET Lannion in order to understand
these buckling phenomena. The sinusoidal and helical critical buckling loads and
pitches are determined by using an energy approach commonly used in petroleum
technologies. Cable buckling is a direct result of bending stiffness, so the influence of
this will be studied in the analytical solutions. To complete this study, finite element
simulations have been conducted to simulate the pushing process and comparisons
made directly between numerical and experiment load values.

1. Introduction

Spreading entire optical access networks to connect the customer requires the
mechanical behaviour of the optical fibre cables structure to be mastered in order to
optimise the cable laying process. The pushing process consists in applying an axial
compressive load to insert the cable into an underground duct. This laying technique is
commonly used in urban areas where the maximum length is often less than 300 meters.
The major part of FRANCE TELECOM’s infrastructure is composed of copper cables
and the renewal of such a large network is a difficult task. The fibre cable studied
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presents a multilayer cylindrical structure. The diversity of the constitutive materials
(PeHD, PVC, Aramid, glass-resin and fibre optical) means that this type of cable can be
considered as a composite beam. The analytical constitutive equations have been
obtained with homogenisation techniques on multilayer cylindrical beam (Boulharts,
1997). In this study, we will deal only with a homogenised cable submitted to an axial
compressive load. Because of friction or the complexity of courses, the cable can
buckle when it is being laid by pushing. This phenomena must be taken into account,
since, once the cable is buckled, a large friction drag can be created rendering pushing
impossible. Increasing the load will damage the fibre optics and increase the cost of
laying. In order to understand these phenomena better, the CNET Lannion has
manufactured a life-sized experiment bench (Figure 1). The maximum length of the
bench is 45 meters. The translucent duct allows the shape formed by the cable during
the buckling process to be observed. The presence of different load sensors gives
important results that will be compared to the analytical results presented in this paper.
The buckling process is obtained by fixing an end stop with a load sensor at the end of
the duct.

> i

Computer \"._

Cable

=, Guiding
End Stop Encoding Pressure

N\

Motorized Pusher

with force sensor wheel

~

Translucent duct

Force sensor - Force sensor

Figure 1. Experiment pushing bench.

The buckling of cable in rigid circular ducts has spatial modes that are called
sinusoidal and helical modes, depending on the geometrical configuration taken by the
cable. Figure 2 helps explain the process of buckling and post-buckling with an
increasing compression load. Since the load is less than a first critical load F,, the
cable is straight in the lower part of the duct. As soon as compression is greater than
this, the cable buckles in a sinusoidal configuration, snaking in the lower part. The
sinus half-wave grows as soon as a second critical load F,, is attempted. At this instant,
a transitory process appears and the cable quickly buckles into a helical shape.

The helical buckling phenomenon was first studied by Lubinski (1950) and
sinusoidal buckling by Paslay et al. (1964) and Dawson et al. (1984). More recently,
Wu (1992) re-used some parts of these studies and completed them. All these studies
took place in the context of petroleum technologies and presented the same phenomena
as ours. Theoretical values such as critical forces and pitches will be compared with
experiment results.
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Figure 2. Sinusoidal and helical buckling.

The first part of this study shows the results of experiments, especially for the
helical configuration. The second part presents the theoretical study of these
phenomena. Thirdly, a finite element simulation of the pushing process, performed
with ABAQUS, is described; and finally, comparisons are made between experiment,
analytical and numerical results.

2. Buckling study experiment

An example is given for a cable pushed inside a 45 meter long duct. The different loads
of interest, which are the pusher effort F,,, the reel effort F_, and the end stop effort
F,» are directly recorded by a computer. The real pushing load is obtained by the
difference between F_ and F_,. Once the pushing experiment stops, the helical pitches
are noted by a metric system arranged along the duct. )

1. The pushing effort evolution

The pushing speed is fixed at 20 meters per minute to be as close as possible to
the real pushing process. The encoding wheel at the entry of the duct denotes
the position of the cable head during the experiment. The recording of the
experiments can be divided into three distinct parts, according to the
compressive load. In part A, the compressive load F,, remains nearly constant,
the cable is straight in the lower part of the duct, the end stop force is equal to
zero. In part B, the cable head reaches the end stop, the pusher load increases in
less than 1 second and the cable buckles quickly into a helical configuration. It



can be observed that the end stop effort increases up to 10 daN and tends to be
constant. This phenomena is called “lockup” in Wu (1992). Increasing the
pushing load has no further influence on the end stop load, as the frictional drag
generated by the helical configuration is too great. Part B ends when the pusher
load reaches the value 170 daN value, since at this instant the load rapidly
decreases due to the break in the cable that buckles in a figure of 8 inside the
duct just next to the pusher where the load is at maximum.
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Figure 3. Efforts Fpush’ Freel and Fstop recordings

2. Helical configuration study

Once the pushing experiment is finished, the half-pitch P, of the helix number
i is measured with a ruler fixed along the 45 meters of the duct (Figure 4). Pitch
length depends on the compressive load applied. As a result of friction, the axial
load decreases along the duct and so the helix pitches increase as the end is
neared, as shown in Figure 5.

duct entry
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[ T R
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iy
Top view v
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Figure 4. Measurement of helix half-pitches P, /2 along the duct.

Pitches are influenced by the boundary induced by the end stop (Figure 5).
The long length used for our experiments here demonstrates its necessity. Some
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Some reversal pitches have been observed along the duct. They appear as a
result of friction or when snap-through to change from sinusoidal to helical
mode does not take place. These reversal pitches induce a large variation in
pitches as in Figure 5.
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Figure 5. Evolution of experimental cable helix periodicity.

3. Theoretical buckling study

An energy method application developed in petroleum technology (Wu, 1992) is used
to determine the critical loads and pitches. Several assumptions must be made: the
system is frictionless, the cable has a homogeneous bending rigidity and is always in
contact with the duct, which is perfectly circular, rigid and long. An angular
perturbation m(x), without energy contribution, is applied to the initial straight cable,
this perturbation is similar to the sinusoidal or helical buckling modes respectively Eqn.
(1) and Eqn. (2).

Figure 6. Cartesian reference and angular perturbation
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n(x) = 2” @)

The aim is now to calculate the variation of potential energy between the initial
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cable is in a new state of equilibrium if this variation is minimal. The general buckling
loads F_ and F, are obtained (cf. Table 1) in relation to the duct length L, the number of
pitches n (with no friction, L/n is exactly the pitch length), the weight w,, the radius gap
r between duct and cable and the bending stiffness EI. These general buckling load
values have now to be minimised by P=L/n in order to obtain the critical pitches P and
P,, which are introduced in the general buckling load to give the critical buckling loads
F,and F_,.

For the transmission of axial load F(X) along the duct, the formulations given
by Wu (1992) are used. It is important to notice that X = 0 corresponds to the end stop.
The cable studied has a low weight (120 g per meter) that allows us to use a force pitch
relation for weightless cable. The influence of the cable bending stiffness upon the
helix half-pitches is shown in Figure 7.

TABLE 1. Ciritical buckling load and pitch expressions for each configuration.

Sinusoidal Configuration Helical Configuration
Without friction : Without friction :
2 2 2 2
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Figure 7. Influence of the bending modulus EI upon helix half-pitches.



4. Numerical buckling study

The 2D finite element simulation of the pushing process is performed with the
explicit version of ABAQUS. The pusher is represented by a system of three wheels
meshed with rigid elements. The upper wheel, free in axis 2, generates geometrical
faults on the cable to initiate the buckling process when the cable reaches the end stop
(Figure 8). The cable is meshed by beam elements, the duct and the end stop by rigid
elements. The pushing speed is fixed at 30 meters per minute. The evolution of F_,
(given by the wheels) and F, is given by Figure 9. As in the simulation experiment,
(Figure 3), a large increase of F,, in a short time can be noted. F, also increases and

stop
becomes stationary, as in the experiment.

Figure 8 : Deformed cable in 2D numerical simulation.
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Figure 9 : Effort curves during numerical simulation.
5. Comparison

Table 2 shows the experiment, analytical and numerical values of Fy ¢, and
Fstop for a 5-meter duct. The values obtained are consistent; the difference between
numerical and experiment values comes from the finite element simulation which is
only a 2D simulation.

TABLE 2 : Efforts F push and F ., comparison
(E = 7500 N.mn?’, r—28mm, w, = 0005)23Nmm u=0.3)

Experiment Analytical Model F.E. Model
Fpush (N) 980 620 1000
Fstop (N) 210 210 750
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Figure 10 illustrates a comparison between experiment, analytical and numerical
half-pitches. The different pitches along the duct remain within the same, narrow scale
[280-420 mm].

Comparison
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Figure 10. Comparison of buckled cable pitches

Cables present geometrical faults due to their storage on reels. The wheels
generate this fault in the numerical analysis, but, in the analytical simulation, the cables
are assumed to be perfectly straight, explaining the difference between the analytical
and the other two curves.

6. Conclusion

The overall behaviour of cables during the pushing process has been understood well
through the experiment bench. The analytical solutions (pitches and transmission of
axial load) derived from petroleum drilling technology allow us to determine the
influence of the different parameters of this process. The 2D finite element simulation
of the pushing process, which has never been performed before, gives enough good
results compared with the experiment results to forecast 3D modelling for predicting the
helical buckling configuration. In conclusion, these three tools together form a helpful
approach for cable design and installation by pushing.
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ABSTRACT

Some industrial tools are submitted to thermal loading which induces irreversible
viscoplastic strains in surface layers, damages them and provokes their failure. The
behavior and damage forecast of the structure needs an accurate numerical simulation
to evaluate strains and stresses due to the thermal effects. In order to apply a loading
which is representative of the experimentation, we propose in this study to use the
numerical process of the inverse method to identify and optimize the parameters of
constitutive thermal laws.

L INTRODUCTION

Thermal fatigue, according to the periodicity and the severity of the cycles, induces
irreversible strains in surface layers of loaded structures, damages them and provokes
their failure [1]. Hot forming tools such as continuous casting cylinders [2] or forging
dies and also thermal treatment of metallic alloys such as quenching induce these
kinds of solicitations.

We propose in this study to set up a numerical methodology in order to optimize
the tooling surface protection (the type of coating material, its thickness, and its
treatment, etc.) at less cost.

The numerical simulation consists in modeling the thermomechanical behavior
of loaded structures using the finite element method. In order to more accurately
simulate thermal loading, an inverse method is used ; it consists in optimizing the
parameters of constitutive thermal laws (heat flows and convection parameters).

The optimization and the numerical simulation quality simultancously depends
on.:.the adequacy. between the experimentation and the industrial tooling ; the accuracy
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of the experimental measurements ; the numerical conditions such as the mesh and
the choice of boundary conditions.

II. OPTIMIZATION AND SIMULATION PROCEDURE
11.1. The inverse method

Fourier laws [3] define the different modes of thermal exchanges. Some of the
parameters such as the heat capacity (Cp) and the thermal conductivity coefficient (1)
are well known for each temperature range and each material. However, the convection
parameters (h;) and the heat flow (Q)) are difficult to quantify by experiment.

An inverse method process makes it possible to numerically estimate a thermal
loading which is representative of the experiment process. Therefore, it is necessary to
perform experimental tests to measure the thermal evolution in samples.

The optimization procedure is based on the reduction of the difference between
the experimental measurements and the numerical results by optimizing the
parameters of thermal laws (h; and Q). After the first iteration, the introduction of
these optimized parameters in the finite element software using a numerical interface,
allows the calculation of a new thermal map and so a decreasc of the difference
between the experimental and calculated values. After a few iterations, the gap
becomes stable at a minimum level. So we consider these parameters as being the best
ones to describe the experimental loading with the thermal modeling (Figure 1).

The thermal difference between the experimental and numerical process is
calculated at particular points of the structure. At each point, a thermocouple is
implanted. And then in the finite element code (ZeBul.oN) [4], a scries of nodes of the
mesh must be located on these particular positions. The number of measured points
and their positions depend on : the dimensions and the geometry of the loaded
structure, and also the intensity of spatial gradients.

It must be noticed that a good optimization needs on the one hand, that
different values of initial parameters are tested (to avoid the problem of local minima)
and on the other hand, that the internal parameters of the numerical process do not
affect the final result (the number of iterations, the convergence parameter, etc.). The
optimization code used is SiDoLo [5].

[ NUMERICAL PROCESS _|

[ {1_]-:7:.1*.‘.1::31m.r'..-:_:.-'.-.j;* ] [Numerical Interface] Finite elements code
. Numencal Interface : e
L SiDolo | | ZeDuloN __
N R I'ransfer
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datas 1L

[{ip_.:EG;m}{fn of Q; and j
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Figure 1 : Numerical procedure of optimization.
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IL2. The thermomechanical simulation

After the thermal loading optimization process, the anisothermal mechanical behavior
of the structure is calculated using the finite element code where elastoviscoplastic
laws [6] were implanted. These laws makes it possible to model the thermoelasticity
by elasticity parameters such as the Young modulus and the thermal expansion
coefficient. The viscoplasticity is introduced by two kinds of hardening (isotropic and
kinematic) and the viscous stress. The twelve parameters of the anisothermal behavior
laws of the material are identified in the working temperature range of the thermal
cycle. Therefore, it is necessary to set up an experimental database from isothermal
mechanical tests such as low cycle fatigue and relaxation or creep tests. All these
parameters are identified and optimized for each tested temperature by using a similar
numerical process described in the previous part [7].

III. APPLICATIONS
ML 1. The continuous casting cylinder

The first application studied here, concerns the hot forming tool used in the continuous
casting process. A multilayer coating deposed by a Plasma Transferred Arc protects the
cylinder surface. The material used is a stainless martensitic steel (X10Cr13) (with a
thickness of 2 mm) and a ferritic steel substrate (25CrMo4). The thermomechanical
behavior of each material has been identified and optimized from the numerical
procedure described before [8]. The parameter values have been linearly interpolated as
a function of the temperature.

1II.1.1. Experimental procedure

The rotated cylinder is high frequency heated with a “pancake” inductor type to obtain
at its center a maximal surface temperature near 500°C. The cooling sources are
performed by compressed air nozzles which are distributed on two generating lines of
the cylinder and a lengthwise water circulation at its center. The heating and cooling
sources reproduce the same thermal gradients which have been measured on the
industrial set up. The thermal evolution is recorded by thermocouples implanted at
different depths and by an infrared pyrometer for surface measurements (Figure 2).
The experimental database is established for the stabilized cycle which is reached at
the fifteenth thermal cycle. Ten measurement points are plotted on the central slice at
different depths versus time (Figure 2).

Inductor ‘ ; 2(9)(5):2
Compressed = 3:325°C
air nozzles o TG Compressed | 4: 330°C

— 4 o 2 , 4 —airnozzles | 5:305°C
N ] 6: 70°C

XI0Cr3 gl 7 X & 7000
Water circulation 9.‘2450(:

Figure 2 : Experimental set up (half cylinder). 10.: 184°C
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11.1.2. Thermal loading optimization

Finite element calculations are made on a bidimensionnal structure with a thickness of
1 mm which represents the central slice of the cylinder located under the middle of the
inductor where thermal gradients are the highest. In order to obtain a best repartition
of the thermal exchanges, the slice is divided in sixteen sectors. The heat flows and the
convection parameters are distributed on each one of them according to experimental
conditions (Figure 3). The mesh is constituted with 8 nodes-quadratic elements and it
is composed of 1500 clements. The parameters Q; and h; are optimized for the
stabilized cycle. The thermal results are obtained after 100 iterations between the
optimization software and the finite element code. The optimized temperature values
are presented in the table 1.

Inductor
TR G h; forced
4
h; forced |
X10Crl3
25CrMo

h; free
Figure 3 : Thermal exchanges distribution.

Point Experimental | Calculated
Temperaturc temperature
(&) C)
1 500 511
2 395 376
3 325 344
4 330 322
5 305 317
6 70 114
7 40 50
8 70 119
9 245 244
10 184 200

Table 1 : Comparison between the experimental and calculated results.

After the reading of the Table 1, the best results arc obtained for the points
which are located on the slice surface and also for the ones which are located near the
central axis. For the other points, the results are less accurate by reason of the difficulty
to simulate the depth of penetration which is induced by the heat flow. However, the
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numerical process gives us a good simulation of the experimental test. Before the
mechanical calculation of the structure, the complete thermal process is simulated from
the initial state (20°C) to the stabilized cycle. Therefore, the cylinder rotation is
simulated by the thermal boundary conditions rotation. For the mechanical calculation,
the applied thermal loading is composed of the succession of these thermal maps.

1I.1.3. Mechanical calculation

One of the two faces of the slice is considered as being the symmetry plane of the
cylinder, then the displacements of its nodes are equal to zero in the lengthwise
direction and one node which is located at the center is blocked in the three directions.
For the other face, we have adopted the hypothesis of the infinite cylinder. A
tridimensionnal simulation has been tested to validate this choice of boundary
conditions [9].

This applied thermal loading induces low viscoplastic strains (< to 10™) in the
structure. This low plastification (considered as negligible) predicts a long life to the
structure. The numerical results are confirmed by the experiment because after 150
thermal cycles, the cylinder exhibits no crack. The Figure 4 shows that the stress states
are always in compression during the thermal cycle, which slows the thermal fatigue
crack initiation.

— IF'ime (s)

(MPa)
b

("]

Figure 4 : Evolution of stresses versus time at the stabilized cycle.
I11.2. Thermal treatment

The inverse method can also be used for studying thermal treatments and especially
superficial quenching of metallic alloys. In order to determine the strain and stress
level in the quenched sample, it is indispensable to correctly evaluate its temperature
evolution. The simulation makes it possible to define the influence of heating and
cooling sources on the thermomechanical evolution of the structure.

1I1.2. 1. Experimental conditions

Quenching tests are realized on cylindrical samples coated by P.T.A process with
X10Cr13 steel on a 25CrMo4 substrate. In order to obtain the thermal conditions of a
superficial quenching, we apply a temperature gradient to the sample. The cylinder is
heated by a_three circular_spirals_inductor and it is cooled by a continuous water
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circulation on its basis. The coating is cooled by a compressed air nozzle which is
located on the top of the heated surface (Figure 5).
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Figure 5 : Experimental set up.

The thermal measurements are recorded versus time by three thermocouples which are
implanted at different depths in the sample and by an infrared pyrometer for the
surface temperatures. After heating the cylinder surface at 500°C, the inductor is cut
off and the air-cooling is activated until the specimen reaches a temperature lower than
50°C.

111.2.2. Cooling optimization

The cylinder is axisymmetrical ; therefore the mesh is bidimensionnal and it is
constituted with 8 nodes-quadratic elements and it is composed of 190 elements. The
periphery of the sample is more finely meshed because it corresponds to an important
thermal exchange area. One node of the mesh is affected to the position of each
thermocouple. The optimization procedure is performed on these particular points by
minimizing the difference between experimental and calculated values versus time
during the cooling. The convection conditions defined for the structure are described

on the Figure 6. o
Continuous water

h forced : .
[ 4— circulation
h free
—'* ambiant air
e |
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compressed air pulverization

Figure 6: Convection parameters distribution of thermal shock samples.
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The results obtained are satisfactory and show a good adequacy between the
experimental measurements and the numerical simulation (Figure 7).
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Figure 7: Evolution of temperature at each thermocouple versus time.

After the cooling optimization, we have simulated the complete thermal cycle
from the initial gradient (from 500°C to 100°C) to the end of cooling.

1I1.2.3. Mechanical calculation

The loading is only a thermal loading and it is composed of the succession of thermal
maps which have been calculated in the thermal simulation. The mechanical
calculation evidences a maximal von Mises stress for the point A located at the center
of the cylinder(Figure 5). This applied thermal cycle induces low viscoplastic strains in
the structure (Figure 8).

80
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=
£ 40 j
-
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Figure 8: Evolution of the total strain &,; versus time at the point A.
IV. CONCLUSION

The inverse method allows us to simulate a thermal loading similar to the one which is
applied in the experiment and also to calculate strain and stress levels of the loaded
structure. The optimization quality directly depends on the comparison between
experimental and calculated thermal values. Therefore, it is indispensable to perform
experimental measurements with a maximal accuracy. In the both studies presented
here, we have evidenced the no-existence of viscoplastic strain. Now, it would be
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interesting to simulate higher thermal loading to reach a viscoplastic strain level and to
complete this work by the study of the damage of materials.

In the case of the continuous casting cylinder, we are now going to test different
types of coating materials or different thicknesses, in order to observe their
thermomechanical effects on the loaded structure.

In the study of superficial quenching tests, we can now approach the notion of
residual stresses in order to validate the choice of the behavior model by comparison of
numerical forecast and residual stresses measurements.
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An original method is proposed for the localization of collapse mechanisms in axial
compression and bending for multibody modelling of simplified vehicle crash
simulations. It consists of using a global beam finite element model coupling with
results of analytical models for the determination of characteristics in the post-collapse
stage. The objective of this paper is to verify, in the context of three dimensional
multibody modelling, the localization method with the use of force-displacement and
moment-angle relationships obtained from kinematic models. In order to verify the
validity of this approach, a study on two thin-walled side bars, such as a double
curvature “S” frame subjected to impact a rigid block is performed.

1. Introduction

Numerical simulation of the collision of transport vehicles is currently undertaken using
finite element models which can include up to 100 000 shell elements on a
supercomputer. While this so-called local approach is altogether feasible and
economical when compared to the costs and timings of purely experimental methods,
the “fully blown” simulation method must only be used when the structure design is
well enough advanced to optimize it. As a matter of fact, during the design phase, the
manufacturer wants to have access to a simulation and crash optimization methodology
which enables him to have a quick and rough idea about the behaviour of several
alternative designs.

2. Multibody Modelling

We have developed a computer-based method CRASH-3D (Cornette et al., 1996), for
the _formulation_of nonlinear._dynamical _constraints equations of motion for spatial
dynamic analysis of mechanical systems. A natural coordinates system, developed by
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G. Villalonga et al., with Kane's equations has been used. We have seen that these
methods are separately efficient for the modelling of multibody systems and that the
combinated use developed here allows one to obtain rapidly the spatial dynamic
simulation result. We are interested in a method which gives us a minimal system of
differential equations and which permits us to model a structure rapidly so as to use it in
a mathematical structural optimization. This program uses a super folding element and a
super beam element concept in order to characterize plastic deformations during
structural collapse (Markiewicz et al., 1996). An analytical method is used to determine
the resistance to the collapse of thin-walled structures of a relatively complex geometry
when subjected to axial compression and bending.

The use of multibody systems for the numerical simulation of the collision is based on
the following concept : the structure we are studying is represented by a set of rigid
bodies connected by different joints. Rigid bodies help to characterize on the one hand
all the inertial components of the structure and on the other hand, all zones that undergo
no or only weak deformations. These different rigid bodies are connected by joints that
characterize all the deformation of the structure. These joints are the association of
geometrical links with non-linear springs. The axial compression of an element is
represented by the superposition of a translation joint (prismatic link) with a rectilinear
spring including Force-Displacement characteristics of this element. In the same way, a
plastic hinge associates a rotational joint (revolute or spherical link) with a rotational
spring so as to characterize the bending of the structure.

Nevertheless, the characteristics of the generalized springs for localized large
deformations have to be determined. The response of a typical prismatic column loaded
in axial compression or in bending consists of three phases (Figure 1). The pre-collapse
phase corresponds to elastic-plastic deformations. In the case of elastic buckling, the
point “a” characterizes the critical moment or force of elastic buckling. A second post-
buckling stage then takes place in which each plate is subjected to transversal
displacements. At the collapse point “b”, the moment or force reaches a maximum (or
peak). In the case of plastic buckling, for thick plates, plastic deformations appear
before reaching peak force or moment. After that, the post-collapse phase leads to a
reduction in the moment or force response and large plastic bending deformations. The
resistance to collapse of thin-walled structures of a relatively complex geometry when
subjected to axial crushing or bending are determined analytically by kinematic models.
Pionneering works in this area are due to Abramowicz and Wierzbicki (1989) and
Kecman (1979). Present authors have extended it to complex cross-sections profiles
(1996) and developped new models (1997, 1999).

\ M (Nm)
P(N) | pre-collapse A pre-collapse
b collapse (peak momentum)

collapse (peak load)
a post-collapse (crushing)

) post-collapse (bending)
mean crushing force

8 (m)

a b
Figurel. Crushing (a) or bending (b) characteristic of a typical prismatic column.
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3. Localization Method

The localization of large plastic deformations is an absolutely necessary tool for the
multibody modelling of the structural crash behavior. The localization method has to
determine the number and to position the deformation joints so as to optimize the
calculation time. An original method based on the comparison between analytical
results for the local components and a global beam finite element model is presented.
The beam models implemented in PAM-CRASH™ are based on the Belytchko-Schwer
(1977) formulation and on the Euler-Bernouilli beam theory. The main feature of this
element is its ability to handle efficiently large displacements and rotations.

For axial compression load or purely bending load, this beam describes correctly the
pre-collapse stage of thin-walled structures (Figure 2). The use of this beam element in
a global beam finite element model allows to obtain the value of peak force or moment.
As the beam theory does not represent the post-collapse stage for thin-walled structures,
it is taken into account by means of kinematic models in the multibody model. The
advantage of a global beam element model is that the pre-collapse curve is obtained for
real loading conditions (dynamical inertia and strain rates effects) combining
compression and bending. In the case of complex structures, bending moments are
calculated for the true moment arm.

Pre-collapse Post-collapse

A
FouM

~ ——— Analytical model

- == FE beam

goue

Figure2. Comparison of force/crushing or moment/folding angle responses
for analytical model with the finite element beam model.

In the case of complex structures, for bending load, this beam element allows to obtain
the orientation of the bending plane necessary to calculate the post-collapse
characteristics with the kinematic model in bending.

This method is summarised by the algorithm on Figure 3. This algorithm is divided into
nine parts (0 to 8) which are used in an iterative procedure in the calculation parts.

*Step 0: A finite element model of the sub-structure or the entire vehicle is made with
real loading conditions (initial velocity, rigid wall, added mass and so on).

*Step 1: Analytical models in axial compression and in purely bending are determined,
for each type of beam cross-section of the structure, the peak force Pxa and the
peak moments Mya and Mza for the two principal inertial directions.

*Step 2: For each calculation time step into each beam element, the maximum
compression force Pxef and maximun bending moments Myef et Mzef for the
two principal directions are obtained.

*Step 3: The norm Mef is calculated by :



22

Mef = \[Myef* + Mzef® (D

It corresponds to the beam bending moment into the plane oriented with the
angle of inclination ¢ to the plane (xOy).
*Step 4: The angle of inclination of the plane is determined by:

()]

*Step 5: Using an elliptical interpolation, the analytical bending moment for this
direction can be predicted by:

Ma= \[(Mya cos(4))’ +( Mzasin(p))’ 3)

*Step 6: The values Pxa and Ma define localization criteria of the collapse mechanism
in axial compression and bending.

*Step 7: If these peak values are reached by the maximum compression Pxef or the
maximum bending moment Mef, the beam element is replaced by an equivalent
deformation joint in either axial compression or purely bending. The
characteristic of the non-linear spring is obtained by combining the response in
pre-collapse stage of the beam element with the response in post-collapse stage
of the analytical model in compression or in bending. In the case of a plastic
hinge, the bending characteristics are calculated for the post-collapse stage in the
bending plane ¢.

If the peaks are not reached, a new iteration takes place with stage 0.

*Step 8: A multibody or hybrid model (multibody/finite element) of the structure is
obtained. This step corresponds to the new model for the step @ of the following
iterative procedure until the current time t reaches the final time (t;) of the study.

This iterative procedure allows to predict all the deformation zones which appear during
the simulation. It corresponds to our expectations for an approach in an early design
stage because the calculation time is very short.

4. Application to an Impacted Double Curvature Thin-Walled "'S" Frame

The structure represented in Figure 4-a is a simplified side member of a vehicle, a
double curvature thin-walled “S” beam type. Similar studies have already been
undertaken on the same type of structure, but in planar configuration (Drazetic et al.,
1993). The vehicle mass was localized at the end of the structure. Consequently, only
bending mechanisms were initiated. However, several studies on the crash behavior of
transportation vehicles show that compression and bending loading act almost
simultaneously. In a previous study by the present authors, the same planar structure
was used with some modifications. Load and boundary conditions were used in order to
initiate an axial compression collapse, followed by a bending collapse in the curved
zones, and to highlight the compression/bending coupling. In the present paper, the
same conditions are used for an "S" beam in a three-dimensional behavior. Objectives
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are to verify, in the context of three-dimensional multibody modelling, the coupling of
the localization method with the use of the force-displacement and moment-angle
relationships obtained from kinematic models in compression and bending.

Beam Finite Element
Modelling

current time < final time

0)

@

ANALYTICAL MODELS FINITE ELEMENT MODEL
Determination: Extraction in each beam
- of the peak load in |- of the peak moments element of:
con]p?eessign Pxa Mya et Mza for the | Pl Myef et Mzefl
pl'll'lCllp8| inertial TG eel | Myel |
directions 4 - 4 - Mael
PN} pya
&(my 6™
& (m * @
>
1 Moment calculation
@ Mef=(Myef 2+Mzef 2)'?2
ELLIPTICAL INTERPOLATION : Y @
Prédiction of the peak analytical moment g | Dﬂe"“i“a‘io“_oﬂh‘? bending
) plane orientation
Ma=((Mya cos ¢) *+(Mza sin ¢) *)'* ¢=atan(Mzef/ Myef)
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-
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Mef ou Pef Ma o Pi ®
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Multibody modelling and/or]
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Figure 3. Algorithm of the localization method.
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compression and bending kinematic models. The second objective is to evaluate the
interest of this simplified approach dedicated to the pre-design stage in terms of
modelling and CPU time saved.

Figure 4. a - Description of the tested structure, b - Multibody model.

To provoke the axial compression collapse and bending collapse in the curved zones
one after the other, we have considered a real context which consists of distributing the
additional mass into two places according to a ratio 1/2 and 1/2. The energy absorbing
capability of two single "S" frames does not allow the use of the total mass of a mean
range vehicle of 1200 kg. That is why, from a strictly academic point of view, we have
decided to take a total mass corresponding to the kinetic energy dissipation capability of
the structure. 80 kg are put on the low extremity that represents the side member / car
body link and 80 kg are put on the high extremity that corresponds to the side member /
crosspiece link. To avoid the risk that compression and bending mechanisms act in
parallel, the double curvature "S" frame is composed of two members made of different
steels. These steels are developed by SOLLAC for the car industry in order to improve
the energy dissipation capability with the conflicting requirement for weight saving. A
SOLPHOR P220 high strength steel is used for the straight part in front of the
crosspiece which collapses in compression. A SOLDUR 355 HSLA is used for the rest
of the structure which collapses in bending.

The cross-section is of a spot-welded trapezoidal-hat type. The space between two spot-
welds, determined by kinematic models and corresponding approximatively to the
plastic folding wavelength, is of 35 mm.

4.1 THIN SHELLS FINITE ELEMENT MODELLING

Due to the symmetry only one side member is modelled by 7680 elastic-plastic thin
shells. The strain rate material sensitivity is taken into account according to the Cowper-
Symonds law. The spot welds are represented by 48 rigid bodies. The impacted zone is
modelled by a rigid wall. To simulate the side member / car body link and the side
member / crosspiece link where additional masses of 40 kg are added, two rigid bodies
are defined and guided in the impact axis. Finally, the initial velocity is applied to the
nodes of the whole structure and the calculation is implemented for a study time of 30
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ms. At this final calculation time the total kinetic energy is not fully dissipated. There
remains about 1.2 kJ, but the energy dissipation capability by plastic folding in the
bended zones has reached its maximum.

4.2 SPATIAL RIGID MULTIBODY MODELLING

The localization method with a beam finite element model is tested. We obtain a spatial
rigid multibody modelling of the side member with 10 rigid bodies connected to 9 non-
linear rotational springs and one non-linear translational spring (Figure 4-b).

The characteristic of non-linear springs is obtained by the combination of the response
in pre-collapse stage of the beam element with the response in post-collapse stage of
analytical models. In the case of plastic hinges, the bending characteristics are
calculated for the post-collapse stage in two bending planes oriented with an angle of
30° (R1,R2,R7-R9) and 58° (R3-R6).

The comparison with FE results has been made qualitatively as well as quantitatively.
Table 1 gives the results in terms of crushing distance, velocity, acceleration and
dissipated energy at the final time of the simulation for the finite element beam, shell
and multibody models. We compare the crushing / times and the velocity / time
responses (Figure 5) of the node which corresponds to the side member / car body link.
On the PAM-CRASH™ model, this node corresponds to the rear guided rigid body for
which the deceleration, velocity and displacement are obtained at the center of gravity.
The results obtained by the simulation using the spatial rigid multibody model give
satisfactory results when compared to shell finite element results. The results of the
beam finite element mode! are not satisfactory, but the only interest of this approach is
its use for the localization method

From the quantitative point of view, in terms of crushing / times and velocity / time
curves, the results are similar. The crushing / time comparison shows a good correlation
of the history with a final gap of 10.24 mm. In terms of dissipated kinetic energy, the
final velocity of the rear end structure is 7.3 ms™! for the shell FE model and 7.39 ms™!
for the multibody model. The initial kinetic energy is 9 kJ. By considering that, at time
30 ms only the rear added mass of 40 kg is acting, we deduce an energy dissipation of
7.932 kJ for the shell FE model and 7.906 kJ the multibody model. For the set of results,
an acceptable relative difference never exceeds 3.3%.

5. Conclusion

We can conclude that spatial rigid multibody modelling is sufficiently accurate to be
used in a pre-design stage. The simulation of the side member crashing over a duration
of 30 ms™! requires about 20 hours of CPU time on an HP 9000/770 (J200) workstation
in the case of the shell model and only a few minutes for the rigid muitibody models.
The very quick calculation and modelling times of the multibody approach allow one to
highlight zones which undergo large deformations and have a first estimation of the
energy dissipation. Coupled with kinematic models which provide the non-linear
translational and rotational spring characteristics almost instantly, this approach allows
the engineer to implement an iterative design process and retain the first technological
solutions before a more accurate but. more expensive modelling approach is undertaken.
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TABLE 1. Synthesis of results

shell model beam model = Multibody error error

(103) (213) model P/R  M/R
R P M
total crushing (mm) 308,17 180 297,93 -41,6% -3,3%
final velocity (m/s) 7,3 0,2 7,39 -972% 1,2%
final acceleration (m/s?) 97,26 0 94,95 100%  -2,4%
dissipated energy(J) 7932 8999 7906 13,5% 0,3%
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Figure 5. Response curves a- crushing/time b- velocity/time for the 3 approaches.
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1. Introduction

Product design imposes validations with simulation that are found increasingly

upstream of the final product's definitions. The industrialists must thus have simulation
software that can be easily and rapidly implemented to compare solutions as from the
preliminary design stages.
This paper describes the application of a new simulation technique that can be very rapidly
implemented. This approach was initially developed by Renault and LMT at ENS Cachan,
France. It is now being industrialised within the framework of a European Brite Euram
project entitled "Low Cost Press Tooling - BE 1773". One of the objectives of this project is
the development of a software intended to rapidly evaluate the structure of stamping tools to
optimise their size, weight and rigidity so as to allow for a cheaper design in terms of
manufacture, handling and transport in the future.

Industrial optimisation problems with 3D geometry currently condition the selection of
resolution methods. The Finite Element Method (FEM) probably is the most common
method for structure calculations, but it can be time consuming in analysing very complex
structures. Simplified methods e.g. material resistance or the plate and shell theory are also
available; these are efficient but limited to highly specific geometries. Intermediate methods
e.g. Trefftz approximations developed from functions observing internal balance can prove
very useful during optimisation processes because they help approach the solution
satisfactorily with few degrees of freedom.

This paper meets Treffiz methodology to solve structural yield strength problems. This
method allows for a quick evaluation of stresses and deformations in structures that may
have complex shapes. It can be used at the pre-project stage where it is interesting to rapidly
have orders of magnitude as regards rigidity and stresses so as to determine the general
shape and size of the structure prior to performing accurate measurements once it has been
defined. The edge effects with short variation length that have little effect on the overall
rigidity of the structure and impose an accurate definition of the geometry (generally not
available in the pre-project phase) prior to calculation can be determined at a later stage.

In the approach presented here, an approximation is designed with polynomials observing
the internal balance. A variation formulation suitable for this approximation is used. This
choice emphasises the representation of the internal effects. The solution fields do not take
the load or displacement continuity into account between the sub-domains that define the
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structure. Very few topological constraints thus need to be observed in the definition of
geometries for calculation purposes. Likewise, the degree of approximation functions can be
different from one sub-domain to the other. This simplicity in the definition of structure and
the low number of constraints occurring in the approximation allow for a wide operational
flexibility.

A software, designed to be integrated into the CAD software already available on the
market, is being developed. This software will allow switching from a volume-related tool
CAD model to a digital model ready for calculation. This industrial code imposed a new
digital operation based on a conventional numerical integration and resolution performance
improvements different from those presented in Hochard (1991).

The calculation code as well as a calculation modelisation example are presented after a brief
description of the simplified method.

2. Simplified Method Description

This Trefftz method was originally proposed by P. Ladevéze (1993). In this
approach, an approximation is designed from the study of the mathematical structure of the
solutions. This study is based on results derived from the St Venant principle as it applies to
straight, semi-infinite, homogeneous, constant cross-section beams and was extended to star
fields. The approximation evidenced can be considered as a satisfactory representation of the
internal effect but may be wrong close to edges where high gradient effects are detected.
While taking the nature of the approximation into account, a variational formulation of the
problem was suggested to consider any type of boundary conditions. One of the aspects of
this definite positive variational formulation is that it is not derived form a minimisation
problem or a saddle point because it is not symmetric. In that, it is different from the
conventional formulations commonly used (Jirousek, 1986) with Treffiz based functions.
The extension to complex structures proceeds by breaking those into sub-domains to which
a natural extension of the formulation used for a simple structure with a set of domains
(Hochard, 1993) is applied. The method is then applied to the non-zero elastic plates within
the framework of the Kirchhoff-Love (Hochard, 1991) theory.

2.1. TREFFTZ APPROXIMATION
The elasticity problem, where body forces are equal to zero, can be written as follows :

To find u displacement field, such that:

divo(u) =0 inQ,
u=uy on 6,0,
o(u)n =f on 0,00, with o(u) = Ke(u) )

where displacements u4 and forces fy are prescribed on 6,Q2 et 9,92 respectively. It can be
shown (Hochard, 1993) that, for inner points of the domain, a good approximation of the
displacement solution u is obtained with polynomials belonging to the following finite-
dimensioned subspace:

UPr = { u polynomial of degree < p, div Ke(u) =0 }.
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These Trefftz functions are representative of the interior effect. Similar results have been
obtained for plates in the framework of the Kirchhoff-Love theory (Hochard, 1991).

2.2. VARIATIONAL FORMULATION
A variational formulation, which is consistent with the above approximation and which takes

into account the boundary conditions, is then introduced. The initial problem is replaced by
an equivalent formulation which can be written as:

To find u belonging to UPy such that: Y u*e UPy
[ou*n.(u=-uy)dl + [u* (c(u)n-f,)dl =0 @)
8Q 0Q

To extend this method to more complex structures, the whole domain is subdivided into
subdomains ;. The problem of elasticity can be written:

To find w, with w; its restriction on £;, such as:

div Kg(u) =0 in Q;,

u; = Uy on 0,Q),

o(u)n =fy on 0,42,

ui=u et o(u)n; +o(u)n=0 only, 3)

where the last line corresponds to the conditions of continuity between €; and €; along I
(ni+n;=0 on Tj). A generalisation of the simple domain variational formulation can be
written (Hochard, 1993):

To find u, with w; € UPy its restriction on €, such as: V u*e UP;
[o*n.(u; —ug)dr + j u*.(o(u;)n —fg)dl +
6119 0,Q (4)
-2-2 [u* (c(u)n; +o(u;)n;) + o(u*)n.(u; — ;) =0
i Ty

This variational formulation is not-symmetrical but definite positive. This study has been
extended to complex assembling of plates.

3. Numerical Implementation of the Method

The first implementation of the sofiware was carried out with a symbolic language
for numerical analysis (Macsyma). From a set of polynomial interpolation functions in terms
of displacement, the deformations, the stresses and the expressions of the various matrices
associated with the variational formulation were calculated and automatically translated in
Fortran language by Macsyma.

This earlier version has shown the potential advantage of the method, but it was not very
useful for industrial structures. To answer industrial requirements, a new version has been
developedpingthepframeworkpofyBritegEuram « Low Cost Tooling » Project. This new
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version, which name is CASSEL (Simplified CAlculation of Elastic Structures), uses several
computational techniques well known in the field of the Finite Element Method (Dhatt,

1981):
®
[ ]

Numerical integration rather that explicit integration
Optimisation of the computer memory usage

Adding several types of boundary conditions and loads to model the behaviour of

industrial structures.

3.1 NUMERICAL INTEGRATION

Using symbolic programming language makes Fortran subroutines very difficult to
read and consequently difficuit to maintain. Numerical integration, associated with

programming rules provides :

A comparison between explicit integration programming (one term of the 196 terms of the
DIO matrix) and numerical integration programming (all terms of the same DIO matrix) is

A Fortran code easier to read and more compact.
Time saving to implement new functionality,

A better reliability by modular programming (one subroutine for one integral of the

variational formulation).

For further development, the ability to use an adaptive technique to adapt the

polynomial basis to the accuracy required

shown Figure 1.

B -

one term of the 196 terms of the DIO matrix

DIO(13,14) = -12#(((3*NU-1)*NY**3+((4-2*NU*NX*+2- 1) *NY)* Y 5+((6-12

ANUYNXANY **2+(-5*NU-1*NX 3+ NX)* X Y4+H(2*NU-4) *NX*N Y #42-+(1-3*N
UYANX**34NK)*F X 5H(SHNUH N Y *#3+(124NU-6)*NX**2- 1 )*NY)* X4 Y+((1
OFNU-2)*NX*NY **2-+H(4*NU+4)*NX**3-6*NX)* X3 Y 2+((-4 ‘NU-4*NY**3+((2

-L0*NUY*NX**2+6)*NY)*X2Y3)

for all terms of the DIQ matrix

DO 30K =1, NFBASE
DO 40L =1, NFBASE
OMEGA = -(WDX(L)*NX+WDY(L)*NY)
flex =nMnEK)*omega+DivMn(K)+MnsK))*W(L)
DIOXK L) = DIOK Ly+COEF*FLEX
40 CONTINUE
30 CONTINUE

Figure 1 : Comparison between explicit and numerical integration
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3.2 OPTIMISATION

The development of this numerical methods requires to solve a non symmetric system

of linear equations (28 equations by plates). In order to save computing memory and to
provide a very quick resolution, a skyline matrix storage technique with its associated solver
has been implemented.
The figure below (Figure 2) shows how the structure built with plates are connected by their
boundary to build the structure. This topology is quite similar to a mesh where nodes are
equivalent to plates and elements are the connection between plates. So, it is easier to
implement an algorithm of bandwidth (Sloan, 1989) similar to finite element method.

Plate structure Internal grid
plate —_— <,\
1 C .
< 2
(2)

Figure 2 : Topology of the plate structure

4. CAD Integration

For detailed design, usually, stamping tools are defined by a solid modelling method, but in
the earlier stage of design, designers thinks about the tool architecture in terms of plates
(walls, ribs, ...). In the earlier stage of design, parametrization (thicknesses, ribs position, ...)
can be very useful to evaluate and compare several design solutions.

CASSEL is clearly well adapted to simulation in the earlier stage of design. In order to
provide to the designer the necessary geometrical and parametrization tools, it was decided
to design the software in a way that it can be connected easily to CAD system available on
the market.

Ideas Master Series from SDRC has been chosen for the first integration of CASSEL in a
CAD system. Ideas provides a functionality to obtain a mid-surface model with thickness
from a solid model (under the condition that volumes are « thin », i.e. with one dimension
smaller than the two others). The Figure 3 shows a solid model and the corresponding
connected mid surface model with thickness required for CASSEL simulation is represented
Figure 4.
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Figure 3 :  Solid model

Figure 4 : Conmected mid surface model with required for CASSEL simulation
In order to display displacements and stresses in a graphical post-processor, each plate is tessellated

and displacements and stresses are approximated at each vertex of the tessellation, using the
polynomial interpolation function set.
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5. Example
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Figure.5 :Displacement magnitude obtained with CASSEL
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Figure 6 :Displacement magnitude reference results (FEM)

considered (Figure 7). The load is prescribed
EL simulation corresponds to all the plates
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represented Figure 7. The displacement magnitude results obtained with CASSEL (Figure 5)
are in very good agreement with the reference Finite Element results represented Figure 6.
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Figure 7 :Mid surface model required for CASSEL simulation
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Abstract

The present work aims at studying contact phenomena within aircraft engines. These
events occur for instance when severe manoeuvrings are operated or when the engine
bears a blade-off event. Two approaches are used simultaneously. The former is a
numerical one and consists in a fine rotor/stator contact simulation. Various contact-
impact algorithms and time integration schemes are tested on elementary cases. The
Lagrange multiplier method appears to be the most appropriate one for dynamic studies.
The latter approach is an experimental one and consists in a vibratory study of the
mechanical coupling between the casing and the fan bladed disk so as to determine what
parameters generate interaction. A simplified experimental test rig is used. Interaction is
produced with selected casing and blade modes.

1. Industrial Context

During the qualification stage of a civil aircraft engine, a series of tests are carried out.
One of these tests is a blade off test that demonstrates the engine capability of containing
damage without catching fire and without failure of its mounting attachments when
operated for at least 15 seconds, unless the resulting engine damage induces a self
shutdown. The engineers need to predict the real loads applied to the engine structure in
order to optimize the design stage. For this, a lot of numerical simulations are carried
out but current software does not give adequate results, and in particular the finite
element simulations involving contact. The aim of our work is to propose simplified
models._providing accurate results. The first part of this paper deals with the numerical
simulation of contact, while the second part is an experimental study.
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2. Algorithmic Aspects

In order to build a simplified model of the dynamic contact phenomenon, classical
contact-impact methods and time integration operators are studied.

2.1. CONTACT METHODS

Two parameters must be defined to characterize the contact conditions : the gap function
g, which represents the distance between the bodies in potential contact, and the contact
pressure A. Thus, the unilateral contact law is expressed as an impenetrability condition
(g20), a compressive condition (A<0), and a complementary condition (gA=0).

The discretized contact problem consists in finding the displacement vector U(t), so

that MU+F™ (U, U)-F* + FOMt —0 and G()=G°+QU, where M is the mass

. int . . Xt . contact .
matrix, F™ is the vector of internal forces, F™*!is the vector of external forces, F is

the vector of contact forces, Uand Uare the vectors of nodal accelerations and
velocities. The gap functions have been adapted to the finite element method and are
noted G and G°, vectors of current and initial gaps. Q is a matrix deduced from the
discretization of the contact entities.

The contact methods derive from the optimization study with constraints. The first
one is the penalty method, adopted by commercial software of dynamic mechanics like
LS-DYNA3D, PAMCRASH or RADIOSS. It consists in introducing artificial springs
between the contact nodes. This method is easy to implement in a finite element code
but admits body penetrations and induces high frequency oscillations. The problem
becomes : find U so that

M7+ F (U, U)+[QTOLQ]U——F°’“ +QTaG%=0 (1)

where the contact force vector is A = aG and o is the penalty parameter matrix.

The second method is the Lagrange multiplier method, which has the advantage of
enforcing the exact geometric contact condition but introduces additional variables,
namely the contact forces. The problem is then to find the couple (U,A) so that

MU+F™ (U, 0)-F* +QTA=0 )
with the condition G(t)=G*+QU = 0.

Another kind of method is a mix of the penalty functions and the Lagrange
multipliers : for example, the augmented Lagrangian or the perturbed Lagrangian
methods. We will not deal with these methods in the present paper.

2.2. TIME INTEGRATION SCHEMES

The scheme generally chosen for high velocity impact problems is an explicit one : the
second-order accurate central difference method

Upy1 =0 +ATU 4172, Unyryz = Upoyy2 +ATU, (3)
with AT =ty —ty =thy1/0 —ty-1/2-
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This scheme is conditionally stable, i.e. the time step must be lower than a limit value,
depending on the discretization of the structure : AT < 2/Wyay, Where W,y is the highest
frequency component in the discretized system.

In the case of low velocities, an implicit scheme can be used. The most common one
is the Newmark time integration scheme

Upyy = Uy +ATU, +AT?[(4-B)U, +BU 4 | “)

Uper = Up +AT[A=1) U +710 4 | (5)
where B and vy are the Newmark parameters. Integration is globally first-order accurate

for y=1/2 and a choice of 2p>y>1/2 leads to an unconditional stability. If B=0 and y=1/2,
the scheme corresponds to the central difference method.

2.3. FORWARD INCREMENT LAGRANGE MULTIPLIER

If the discretized contact problem is resolved using the central difference method for
time integration and the Lagrange multiplier for contact, there appears a singularity : the
contact forces Ap+1 have no influence on the displacements Up41 ! Carpenter et al. {3]
propose an alternative formulation compatible with the explicit scheme :

MU, +F™(U,,U,) - F* 4+ Q41 TAp =0, Gp41=0 (and not Gp=0).
The formulation leads to a predictor-corrector process Uy = U:+1 + U5, |, where
U’:,H is the vector of nodal displacements calculated without contact. The vector

Ury = —AT2M_1Q;1;+1An is a displacement correction due to contact and the force
that permits us to impose the contact constraint is

Ay = [ATZQ,,HM_IQIH]_I(anU;H +6°). ©

3. Numerical Results

The different methods of dynamic contact are tested on simple examples. The first one is
an impact of two identical elastic rods, initially separated, as described in [3]. The
methods used to resolve this problem are the penalty and the forward Lagrange
multiplier methods, with an explicit time integration scheme. Figure 1 shows that the
Lagrange multipliers give very accurate results compared to the penalty method.

If the penalty parameter is increased for a better precision of the results, the nodal
penetration decreases but a lot of numerical oscillations appear in the velocity and
contact force curves. Theoretically an infinite value must be used for the penalty
parameter, but in practice, especially with an explicit time scheme, the contact stiffness
should be of the same magnitude as the structure stiffness, otherwise the time step must
be widely reduced. That is the reason why the results are not always satisfactory.
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With the Lagrange multiplier method, the results are accurate, and the explicit stable
time step does not need decreasing [1]. Thus, in order to model the following examples,
the Lagrange multiplier method is retained.

The second example deals with the impact of an elastic rod against a rigid wall,
resolved using the Lagrange multiplier method with implicit and explicit time
integration schemes and LS-DYNA3D, with the default contact values. The Newmark
scheme with (B=0.25;7=0.55) does not give satisfactory results; there appears
numerous oscillations in particular in the contact force curve [4]. The ($=0.50 ; v=0.55)
implicit and the explicit schemes, coupled with the Lagrange multiplier method, give
similar results, while the explicit-penalty method (LS-DYNA3D) induces a slight nodal

penetration.
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Figure 1. Impact of two identical elastic rods.

The last numerical test is the rebound, without friction, of a 2D rotational elastic
beam against a rigid circle (cf. Figure 2). The steel beam describes an eccentric circle
with the contact one and is subjected to a torque at its extremity on the hinge.
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Figure 2. Beam rebound on a circular contact zone.

The next stage of our numerical study consists in modelling contact with a flexible
axisymmetric surface.
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4. Experimental Aspects
4.1. DYNAMIC INSTABILITY

The experimental part of the study deals with vibratory interaction between the engine
and the fan bladed disk. When an aircraft engine bears a blade loss, high unbalanced
loads are generated. The bladed disk and the casing come into contact, shocking and
rubbing each other. In the meantime the two structures are loaded over a huge frequency
spectrum and numerous natural modes of vibration are excited. Some particular
conditions are required to make the whole system come into resonance and be submitted
to severe stresses. The dynamic instability can lead to the ruin of the engine. Special
attention is therefore to be paid on the exact conditions which give rise to the instability.

Both the casing and the bladed disk are supposed to be axisymmetric structures. As
a consequence, their natural modal shapes can be represented by the number of their
nodal diameters n. If f, denotes the casing natural frequency for n nodal diameters and f,
the bladed disk natural frequency for the same n diameters mode, if f denotes the
rotation frequency of the engine, then a condition for dynamic instability is given by [5]:

fo+fp=nf @)
This equation means that waves in opposing directions are travelling both in the casing
and the blades.
In order to avoid such a coincidence, engine designers are to respect important
frequency constraints which usually lead to increasing the casing stiffness, weighting the
engine down and making it clumsy. Other solutions have to be found.

4.2. EXPERIMENTAL TEST RIG

The purpose of the experimental approach is to examine more precisely the behaviour of
the blades when rubbing on the casing, and validate numerical simulations. In a second
part, the test rig will be used to determine which parameters are involved in the
apparition of interaction, in addition to equation (7).

The test rig used is deliberately simplified (see Figure 3). It consists in a part of a
casing of an aircraft engine bolted on a steel ring which is fixed on the table of a vertical
lathe, and in a blade clamped in the turret. In this configuration, the rotating part is the
casing, and no aerodynamic effect due to the rotation of blades has to be taken into
account. The use of a single blade instead of a whole set is convenient to get rid of the
problem of the direction of the travelling waves through the blades. The contact between
the blade and the casing, as well as the lathe rotation, are controlled by the experimenter.
The instrumentation is made of classical devices: accelerometers (B&K), amplifiers
(B&K), spectral analyzer (HP), and is completed with a Laser Doppler Velocimeter
(Polytec), useful for non-contact measurements on the rotating casing.

A first set of measurements was taken to characterize the test rig, especially to
determine the natural frequencies and modal shapes of the casing. A finite element
model including the casing and the steel ring was established and modified with respect
to the experimental results. For a chosen rotation frequency of the lathe, interaction will
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be induce with a selected mode of the casing and a corresponding frequency of the
blade.

—| LASER

Lathe table

_) Q

Speed control

%
N

Figure 3. Experimental test rig.

4.3. FINITE ELEMENT MODEL - MODAL ANALYSIS

As a first approximation neglecting geometric and material defaults, the casing which
looks like a frustrum of a cone is considered as an axisymmetric structure. The natural
modes of this kind of structures have the particularity to be double ones: to each natural
frequency correspond two different modal shapes. When the axisymmetry is perfect, and
if @ denotes an angular parameter of the structure, the modal shapes in the radial
direction are cos(n8) and sin(n8), where n stands for the number of nodal diameters. No
special orientation is noticeable. In case of imperfections, the symmetry is broken and
the system is said to be mistuned. Each natural frequency splits into two distinct ones,
and the modal shapes are modified according to the importance of the unbalancement.
Particular orientations appears [8].

The frequency response of the casing was recorded while the lathe was stopped,
with a method using a small rotating mirror making the laser spot describe a circle on
the inner side of the casing [2]. Once the identification of natural frequencies was
complete (see Figure 4), time acquisitions were made to extract the modal shapes (see
Figure 5). It appeared that the structure was mistuned both in frequency and time
response, the biggest frequency split being obtained for the 4 nodal diameters mode (this
is due to the way the steel ring was fixed on the lathe). The lowest modes were the most
perturbed ones.

A first finite element model was made with SAMCEF supposing the perfect
axisymmetry of the casing. A modal analysis carried out on the model clearly indicated
that such an assumption was unacceptable. A fine geometrical study of the casing
revealed that for a given altitude, the radius was not constant, the small variation, which
never exceeds 1% being significant enough to disturb the modal behaviour. Another
finite element model was then made including the geometric alterations.
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The new results are compared with the experimental results in Figure 6. The biggest
differences are attributed to the imperfections of the casing embedding.
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Figure 6. Comparison experimental results - finite element model.

4.4. CREATING INTERACTION

The test rig has been used in its current configuration to make first attempts on the
interaction phenomenon. The choice of a mode with regular modal shape is more
advisable. Moreover, to avoid the high modal density at the beginning of the spectrum,
and because of its weak damping, the 10 nodal diameters mode was finally selected.
Using the highest rotation frequency of the lathe (5 Hz), and adapting equation (7) to the
situation in which a single blade is implied, the first natural frequency of the blade was
set to satisfy the mathematical condition of interaction. The contact was then created on
the rotating casing.

The major issue which has to be faced is the lack of symmetry of the casing. The
contact is unfortunately not permanent, and the structure is not excited by a constant
force. As a result, no significative amplitude in the frequency response is noticeable
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neither on the casing nor on the blade. However, it is interesting to remark that for lower
rotation frequency, the 10 nodal diameters mode's answer is higher than the others (20
dB). At these rotation speeds, the contact is quite similar to a harmonic excitation. When
rotating at 5 Hz, the whole structure experiments impulsions whose effect is the
excitation of every mode which is confirmed by the frequency response.

In order to suppress the effect of the geometrical default it is considered to fix an
abrasive material on the inner side of the casing and to machine it so as to force the
blade/casing contact to be permanent.

5. Conclusion and Future Prospects

The interaction phenomena, which have motivated the present work, are of major
concern to aircraft designers. The present study is composed of a numerical part dealing
with dynamic contact simulations on classical examples, in particular with the Lagrange
multiplier method, and an experimental part which consists in identifying the parameters
involving modal interaction. The next stage of our work is the simulation and the
experimental study of the blade/casing dynamic contact.
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1. Introduction

A superconducting quadripole constitutes a part of a high-energy accelerator built by the
CEA in collaboration with the CERN. Magnetic coils must be adequately prestressed
to withstand the magnetic forces without "quenching". The mechanical model of such
a complex structural assembly must take into account the frictional contact between the
various component elements in order to prevent against both displacement and warm peak.

The behavior of an assembly of three-dimensional elastic structures can be heavily
nonlinear when frictional contact is taken into consideration. Classical Finite Element
techniques apply an iterative process to the whole problem, an approach that could prove
quite expensive, especially when the number of contact zones turns out to be rather high
[1]. For this study, we will be using a modular approach which is particularly efficient
when the structure is globally linear and the nonlinearities have been localized on the
connections. This method is based on two distinct approaches : the first introduces a
partitioning of the structure into two mechanical entities - substructures and interfaces -
while the second employs an iterative and completely-parallel scheme.

2. Presentation of the problem

2.1. THE L.H.C. (LARGE HADRON COLLIDER)

The I.H.C. is an_accelerator which subjects protons to "head-on" collisions at higher
levels of energy (14 TeV) than ever attained before. It will be built by the CERN and is
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to consist of two "colliding" synchrotrons, able to accelerate protons to 7 on 7 TeV, after
which the beams will counter-rotate for several hours, thereby producing collisions at the
experimental stage.

High-energy L.H.C. beams require high magnetic bending fields. In order to bend 7
TeV protons around the ring, the L.H.C. dipoles and quadripoles must be capable of pro-
ducing fields of 8.2T. Superconductivity has made this achievement possible. The CERN
and CEA/Saclay have established a joint program to carry out the design, construction
and testing of a superconducting L.H.C. quadripole prototype.

2.2. MAGNETIC COILS

Figure 1. Quadripole cross-section

Two magnetic channels [2] have been incorporated into a single iron yoke and cryostat
and are cooled with a helium superfluid in order to attain the very high guide field required
(Fig. 1). The L.H.C. magnet coils will tend to be long, approximately 14meters, with an
inner diameter of 56mm; they will be made of copper-clad Niobium-Titanium cables. The
insulation is to be composed of two layers of Kapton.

The electromagnetic forces in the quadripoles are contained by the collar structure.
The collars are made of austenitic steel laminations of 2 mm in thickness. The pairs
of half-collars are alternately turned by 90 degrees and are completed by two separate
pole pieces. The keying and prestressing of the assembly is conducted by eight lines of
wedge-shaped stainless steel keys, which are progressively inserted into the grooves on
the outside of the collars. Once the coil-collar assemblies have been prepared and the
coil interconnections completed, the yoke is positioned around the two units. In order to
stiffen the entire yoke assembly, a so-called inertia tube is placed around the yoke. This
tube also serves as the helium vessel.

2.3. MECHANICAL PROBLEM

The mechanical structure of the quadripoles has been designed both to withstand the
strong forces being generated in the magnet and to limit, to the greatest extent possible,
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coil deformation over the entire operating range. The materials used for the most highly-
stressed components therefore exhibit a high load-bearing capacity, high elastic moduli,
a good level of fatigue endurance and good behavioral characteristics at cryogenic tem-
peratures of as low as 1.9° K. Whenever current is flowing in the cables, the coils must
be under compressive stress in order to avoid the appearance of sudden cracks or move-
ments. Coil displacements and deformations must be limited as much as possible. In
order to satisfy these conditions, the relative dimensions of the structural components,
the choice of materials and the level of prestressing all have to be carefully determined.
Furthermore, the peak compressive stress in the coils at room temperature is to be min-
imized so as to avoid any creep of either the insulation or the copper. The main pur-
pose herein is to optimize the adequate level of azimutal prestress in order to avoid the
appearance of coil movements during the functioning of the magnet. It is thus neces-
sary to take frictional contact into account during the following threc load sequences:

— collaring (prestress);

— cooling (from 293° K to 1.9°K); and

— excitation (at the nominal field).

3. Presentation of the computational strategy

3.1. PURPOSE

For this study, we have used a modular approach which is dedicated to the analysis of such
complex situations involving 3D assemblies. It is referred to as the "COFAST3D" (COn-
tact and Friction in Assemblies of 3D STructures) approach. The COFAST3D approach
is based on both a formulation and a strategy which have been well-adapted to the use
of parallel computers [3]. With respect to the work conducted herein, this parallelism is
being applied, above all else, in order to achieve a high level of modularity and flexibility
in the problem description. Parallelism also leads to reducing both the size of the models
and the numerical costs of their resolution, even when the approach is implemented on
sequential computers.

A partitioning of the structure is performed in order to break down the problem from
its global formulation; partitioning involves two distinct mechanical entities: substruc-
tures and interfaces. Each substructure is considered as a separate structure on its own
(in this case, an elastic one) which only communicates with its neighboring interfaces.
Interfaces, on the other hand, constitute the key elements to this approach; they are two-
dimensional entities with their individual behavior, which can be represented in a mixed
manner on the displacement and force fields defined on both sides of the interface [4].

3.2. THE COFAST3D APPROACH

3.2.1.  Decomposition of the structure

In considering an assembly of various components by linkage elements (bolts, screws,
rivets, joints, etc.), a decomposition can be introduced. The components are separated and
the interfaces generated serve to model the connections existing between these elements:
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contact, friction, . .. Each component can also be separated into substructures in order to
reduce the size of the associated model (Fig. 2).

Figure 2. Decomposition of an assembly

The assembly is denoted €, the substructures are denoted (g, Qg/, ..., and rEE’

represents the interface existing between 2g and Q2g:. A displacement field W% and a
field of surface traction density field E_E are defined on each side of an interface (F'Z
represents the action of the interface on the substructure Q).

3.2.2.  Problem on one substructure
Since a given substructure Q2 communicates only with interfaces, the problem to be
solved consists of finding (arE U B ), which satisfies:

e Kinematic admissibility with the displacement on the interfaces: YM € 0€g,

U =we M
e Equilibrium equation under the force field on the interfaces: YU,

[ rretewnaos - [ furaa- [ pPuras=o @
Qp Qe 0p

o Constitutive law (linear elasticity): VM € Qg,
of = Ke(UF) (3)
where f p is the prescribed body forces, U E the displacement field being sought in

Qp, of the stress field being sought in Qg , and £(U™) the strain field generated by the
displacement [U*.

3.2.3.  Problem on one interface

The problem to be solved on one interface consists of finding both the force and dis-
placement fields on both sides which satisfy the behavior of the modeled connection. The
problem can then be expressed as a constitutive relation:

ROWETEE | W?' PP )
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For example, the relation that describes a perfect connection between two substructures
Qp and Qg is: VM € TEE s

FE 4 pF
WE - WwF = 0 (continuity of displacement) (6)

Il

0 (equilibrium of forces) )

3.2.4. Iterative scheme

The iterative resolution scheme employed is based on the LArge Time INcrement method
("LATIN" method) proposed by P. Ladeveze [4]. The case presented herein refers to a de-
generate condition of this method where only the final configuration is sought and where
time is not taken into consideration. The LATIN method separates out the problem’s dif-
ficulties; it enables avoiding the simultaneity of both the problem’s global and nonlinear
aspects. Thus, it takes the mechanical properties of the equations into account in order to
divide them into two groups:

e local in space variable, and possibly nonlinear, equations, and
¢ linear and possibly global in space variable equations.

These groups serve to define two subspaces of elements, s, which denotes the set of
unknowns for the entire problem. Since the only nonlinearities being studied are those
defined on the interfaces and in order to obtain independent global linear problems on
each substructure, the two subspaces are subsequently defined as follows:
Ag = {s, satisfying VQp: T = {s, satisfying VT EE";
— the kinematic admissibility (eqn. 1), — the constitutive relation (eqn. 4) }
— the equilibrium equation (eqn. 2),
— the constitutive law on (eqn. 3) }

Iteration n | [ Search direction Local stage

Behaviour of the interfaces

f f

I

Figure 3. Representation of iteration n

The problem then consists of finding an element s,; that satisfies both the behavior
of the substructures (s € A4) and the behavior of the interfaces (s € T'). The LATIN
method starts with sg, an element of A4, and builds elements s, which belong to " and
Ag,-successively up until reaching the solution s,;. Since a substructure communicates
only with interfaces, the initial solution sy = 0 is an element of Aj.
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Each iteration, i.e. the building of a new element s, 11 of Ay from a given one s, ,
requires two stages: the local stage and the linear global stage (Fig. 3). The local stage
leads to independent nonlinear problems on each point of the interfaces, whereas the linear
global stage leads to independent classical linear problems of structural analysis with a
density of body forces and a density of surface traction on the substructures. These latter
problems are then solved with a finite element discretization of th e substructures. The
discretized form of equation (10) becomes:

(K] + kPl } = /') ©)

where [K F] is the classical FE stiffness matrix and [kZ] is a boundary stiffness matrix.
{f'} is a force vector expressed by the displacement and force field on the interfaces.
It should be pointed out that the stiffness matrix of each substructure remains constant
during the iterative process and thus gets factorized only once at the first iteration.

3.2.5.  Frictional contact conditions

Frictional contact conditions are to be treated at the local stage. A static formulation of
Coulomb’s friction law (displacement law, [S]) has been applied for this purpose, i.e. a
radial loading assessment is carried out and the solution is sought only at the end of the
loading path. For complex loading and unloading conditions, an incremental formulation
of the contact law has been used. The increments involved tend to be rather large (one
for each loading or unloading step). Since the solution to this problem can be entirely
described by the displacement and force field on the interfaces, the only data that need to
be transmitted from one step to the next are those fields on the nonlinear interfaces. Thus,
a correct representation of the loading path is provided, yet the radial loading assessment
does allow for a reduction in the numerical costs

4. Numerical study of the quadripole

4.1. MODEL

The model under study is restricted to 1/8th of the quadripole (Fig. 4). It includes two
levels of collars, one key, the coil, one-half of a pole piece and the insulation. Friction is
considered on all of the contact zones. A 3D mesh of the structure has been developed.

Figure 4. Applied model
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TABLE 1. Comparison with ABAQUS
ABAQUS COFAST3D

number of ddi 24,228 23,709
problem size 95.4Mb 26Mb
nb of inc.fite. 20 inc. 400 ite.
CPU Time (HP735) 8,237 718
clock time 4.7h 13mn
reaction force on the
lower side of the coil 258daN 252daN

4.2. COMPARISON WITH AN INDUSTRIAL FE CODE

The COFAST3D computational strategy has been compared with an industrial Finite El-
ement code (ABAQUS, [6]). Frictional contact conditions are prescribed in ABAQUS
using "master” surfaces and "slave" nodes. The same mesh has been utilized for both com
putations. Table 1 presents some of the results from the comparison carried out for just the
first prestress load case. The ABAQUS number of ddl also includes Lagrange multipliers.
The two results turn out to be very close to one another. The significant reduction in nu-
merical costs (with respect to both size and time) provided by the COFAS T3D approach
is very advantageous for such optimization computations.

4.3. RESULTS FOR THE THREE SUCCESSIVE LOADS

TABLE 2. 0s¢ (in daN/mm?2) at the end of the three loads
for two differing pre-loads
Prestress = 0.2mm o099  Prestress =0.4mm

Collaring |

Cooling

Exitation at
nominal field

The three successive loads have been applied to the structure. The pre-load is then
applied by prescribing an artificial gap between the sides of the key and the collars. Cool-
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ing from 293° K to 1.9°K is modeled by an applied thermal body force over the entire
structure. Afterwards, the excitation can be modeled by a pre-computed b ody force field
on the coil. The material properties change during the cooling process. Thus, the stiffness
matrices have to be updated between the first and second load cases; however, these ma-
trices remain constant between the second and third load cases . The total computation
time is less than 30 minutes on an HP 735 work station. The results for two different
pre-loads are presented: 0.2 mm on each side of the key, and then 0.4 mm on each side.
The coil’s stress state has also been shown. Table 2 indicates the gy stress on the coil at
the end of the three successive loads for two different pre-loads. For the first preload (0.2
mm on each side of the key), the top of the coil is unloaded when the magnetic field has
been applied; opening occurs on the co ntact surfaces - the prestress is to small. Further
computations will be carried out in order to study the influence of the friction coefficient
on the stress state of the coil at the end of the third load.

5. Conclusion

We have presented the application of a dedicated strategy to the design of a supercon-
ducting quadripole prototype. The structure includes different materials, a large number
of frictional contact zones and complex loading conditions: a mechanical prestres s and
cooling, followed by magnetic excitation. It is well-known that frictional contact nonlin-
earities tend to lead to very difficult problems. The dedicated strategy employed herein is
based on both a modular decomposition of the structure and a parallel-resolution scheme.
Contact nonlinearities get treated locally. A special radial loading assessment has been
used to model the complex loading path. The COFAST3D strategy therefore leads to a
great reduction in computational costs, a feature which has been demonstrated by means
of a comparison with an industrial FE code. This reduction is very significant within the
framework of a mechanical design for which many optimization loops can be created.

The initial set of results presented herein are very encouraging and have served to
validate the application of such an approach to this type of complex situation. Further
computations will be carried out in order to assess the influence of the model’s various
parameters.
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Abstract: This paper is devoted to the theoretical and numerical study of a coupler for
crashworthy design of a TGV power car. A theoretical model based on the equation of
energy conservation is proposed for a basic design of energy absorbers like coupler. The
theoretical solution of tube expansion is developed and verified by the finite element
solutions using ABAQUS. A parametric sensitivity analysis is performed.

1. Introduction

The energy absorbers in a vehicle play an important role for crashworthy design [1].
Figure 1 shows a conceptual layout of energy absorbing components in the front part of
a TGV power car. The crushable front part is composed of three energy absorption
zones: retractable coupler, protective headstock and honeycomb structure, as shown in
Figure 1.

' | : coupler
| 5 « fixture
= s 2 hixture
""‘1 ! l /_'_ s I | 3 : energy absorber
UL 4 : headstock
( ) b
g E—

Figure I. Energy absorbing structures in the front part of a TGV power car

This frontal part must absorb about 80% of the energy that should be realized in a
crashworthy design. The conventional TGV can absorb 2mJ impact energy by the
frontal end, but 5mJ is the design target for energy absorption in the next generation
TGV. To accomplish this design goal,.a_new concept of design is necessary for energy
absorbing components. In this study, we propose a crashworthy design of the retractable
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coupler by tube expansion instead of tube buckling collapse [2]. A theoretical and
numerical model will be proposed to improve the energy absorbing capacity.

The coupler must be designed to be collapsed at the impact force under 1500kN.
Its crush length is estimated to be 600mm. The protective headstock is required to be
collapsed at the impact force of 3000kN. This load is applied to the driver’s cab at the
same time with the impact force on the honeycomb structure. The load applied to the
honeycomb structure must be controlled below 2000kN. Therefore, the total load
applied to the driver’s cab is limited to maximum 5000kN. In this design, the impact
velocity of 30m/sec will be used as a typical collision velocity.

To accomplish the impact energy absorption of 5mlJ, it can approximately be
distributed to the three principal energy absorbing components as follows :

e Coupler = 1.2 mJ as 800mm x 1500kN
¢ Protective headstock = 2.2 mJ as 730mm x 3000kN
¢ Honeycomb structure = 1.6 mJ as 800mm x 2000kN

These design specifications are very difficult to be satisfied by conventional energy
absorbing components utilizing the tube buckling collapse as shown in Figure 2, even
though other components like the cartridge can absorb additional impact energy. The
cause is that the buckling collapse has shorter crush length and higher peak force.

Reaction Force

180 B_u—'—'—" ] No Strain Rate
150 | & Py ToRnes Strain Rate (P=5, D=0.0
135 L ---  Strain Rate (P=5, D=1.3
120 |- o
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1]

60

5L
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B
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Figure 2. Tube buckling collapse simulated by PAM-CRASH

It is noted that the numerical modeling of tube collapse is performed using the
explicit finite element program PAM-CRASH [3]. In case of tube buckling collapse, a
flat'crushing response and the space efficiency cannot be accomplished. To complement
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these shortcomings of conventional energy absorbing components, it is necessary to
develop a new kind of energy absorbing components which utilize metal forming
technologies such as tube expansion and tube inversion [4].

2. Theoretical Approach for Tube Expansion

A theoretical solution can be obtained approximately using a simplified geometrical and
material model (Figure 3).

=4

=g

Figure 3. Schematic diagram of the tube expansion process

A kinematic method using the theory of perfect plasticity will be developed with
the simplified geometrical model and the following assumptions :

¢ The material is rigid perfectly plastic and is characterized by the flow stress .
e The strain rate sensitivity is considered by the Cowper-Symonds power law.

o The extension rate in the longitudinal direction is neglected.

¢ The change of curvature in the circumferential direction is not considered.

¢ The bending deformations near both ends of the die are neglected.

o The tube thickness ¢ is taken as constant.

The compressive force can be calculated from the equality of internal and external
rate of energies, as defined in equation (1).

Fv= Eim‘*E/'r ¢))

where F and v denote the pushing force and the velocity of the die respectively, Ein is

the internal rate of energy, and E s is the energy rate dissipated by frictional effects.

From the energy balance equation (1) and taking into account the assumptions defined
above, the pushing force of the die is obtained as :
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F=Fim+F )

where Fj, and Fj; are defined as follows :
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where N, comes from the initial yield stress oy ; D and p are material constants in
the Cowper-Symonds power law :

§ 1/p
o =0y 1+(5j (3)

3. Design and Numerical Evaluation

Because the coupler must move through the expanded tube, the inner radius of the latter
can be calculated by the size of the former. The DN300 of TUE220A, a standard tube
used in France, chosen after comparison between the size of the coupler and the
standard tubes was investigated. The DN300 has the outer diameter of 323.9mm and
several different thickness gauges of 7.1mm, 8.0mm, 8.8mm, 10mm, and so on. The
TUE220A is made of such material properties as Young’s modulus of 210 GPa,
Poisson’s ratio of 0.3, the yielding stress of 220 MPa, the ultimate strength between 360
MPa and 500 MPa, and the elongation of 23%. A material model is defined from the
above material properties for the finite element analysis and the theoretical solution.

The radius of the expanded tube can be calculated using the material elongation
and the size of the coupler. In the theoretical model of the tube, the circumferential
elongation can be defined as follows :

A=L2 (6)

Fi
In this study, the radius of the expanded tube is designed to be 190.8mm for the
circumferential elongation of 20.5%. To reduce the degree of freedom in design, the die
angle a is fixed as 30°. From the die angle and the radius of the expanded tube, the die
length ¢ is calculated as 64.8mm. The effects of the die angle will be discussed in the
next section. The impact velocity is defined as 30m/s. Because the frictional coefficient
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is very difficult to define exactly, it is assumed as 0.1 in this study. The frictional effects
on pushing load will be discussed in the next section. The design guideline of TGV
indicates that a dynamic pushing force is smaller than 1500kN.

With the design variables defined as 07=0.36kN/mm?, v=30mvs, 1=0.1, a=30°,
F=1500kN, c¢=64.8mm, ~=158.4mm and r,=190.8mm, the wall gauge of the tube is
calculated as 7.34mm from the equation (2). Since it is important to use a standard tube
in order to reduce the cost of energy absorber, a tube with the thickness of 7.lmm was
selected from the DN300. For the designed tube, the theoretical solution gives the
pushing load of 1450.9 kN, where the strain rate coefficients are assumed as those of a
typical mild steel, p=5, D=0.0404. To solve the same problem of tube expansion
numerically, it 1s necessary to introduce a moving mass attached to the die and a
structural damping coefficient. A mass of 1000kg and a structural damping coefficient of
0.01 are used here. 300 axi-symmetrical solid elements were used for the numerical
solution using ABAQUS [5]. Figure 4 shows the ABAQUS result for the relation
between the die distance and the reaction force at the fixed end. The small waves in the
solution curve are caused by no smooth contact algorithm which uses a searching
method from node to surface, that is, one way searching algorithm. It is possible to
assume that the smooth solution could be obtained through the points between the peaks
and the valleys of the numerical curve. In this study, the averaged values of two
extremes are used for numerical evaluation. The numerical solution in Figure 4 has a
maximum reaction force of 1635.5kN at about 150mm of the die displacement. This
reaction force is about 11.2% higher than the theoretical pushing load. This difference is
mainly caused by elastic wave effects of the dynamic problem considered in the
numerical analysis but not considered in the theoretical approach. This is the reason that
the maximum value of reaction forces should have a higher value than the pushing load
of the die. However this result is acceptable for a first basic design step. The equivalent
plastic strain is a little high (Figure 4, 29.1%) when compared with the elongation of the
material, 23%. In order to obtain a detailed design, this problem must be improved using
local stress analyses and experimental tests.
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4. Parametric Study

.
LU

ISPLACEMENT

Figure 4. ABAQUS results of tube expansion problem

e

For optimization and design modifications for the basic design, it is necessary to study
the effects of several important design parameters. Furthermore, this parametric study
can give useful information about quality control of the energy absorber and tolerance
decisions of design parameters. Design parameters which are very sensitive to the
energy absorbing performance must be controlled strictly. In this section, several
parametric studies are performed for different velocities, frictional coefficients and die
angles. Tab.1 summarizes the theoretical solutions and the ABAQUS results (axi-
symmetric shell and solid elements) for two different velocities (0, 30m/s), and two

different frictional coefficients (0.0, 0.2).

Table |. ABAQUS results (FE) and comparison to the theoretical solution (Th)

FE model Ele. # u v (m/s) F(Th) kN | F(FEYkN | Elong. (Th) | Elong.(FE
)

axi-shell 100 0 0 546.65 583.2 0.205 0.21
axi-shell 100 0 30 1189.55 1384.5 0.205 0.21
axi-shell 100 0.2 0 787.0 796.6 0.205 0.21
axi-shell 100 0.2 30 1712.2 1914.0 0.205 0.21
axi-solid 300 0.2 0 - 804.45 0.205 0.295
axi-solid 300 0.2 30 - 1903.5 0.205 0.302
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In the static problems, the theoretical solutions and the ABAQUS results are in
good agreement within 6% difference. However, in the dynamic problems, the elastic
wave due to impact may give some effects on the reaction forces because the impact
velocity (30m/s) is not negligible. Two results indicate maximum 14% difference in the
dynamic problem. By the way, since the numerical results show a consistent trend that
they are higher than the theoretical solutions by about 10% differences, the theoretical
approach can be effectively used for a basic design.

With the theoretical solution of the equation (2), the reaction forces can be
investigated for changes of impact velocities, frictional coefficients and die angles. The
relations between the impact velocities and the reaction forces for different frictional
coefficients are displayed in Figure 5. The impact velocity gives a great effect on the
reaction force of the fixed end at relatively low speed (0-8m/s). Figure 6 shows the
relations between the die angles and the reaction forces for different frictional
coefficients. The die angle gives a little influence on the reaction force at low frictional
contacts.
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Figure 5. Relations between impact velocities and reaction forces for different frictional coefficients
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Figure 6. Relations between die angles and reaction forces for different frictional coefficients

5. Conclusions

The theoretical solution of tube expansion has been developed and verified by the finite
element solutions using ABAQUS. It is found that reasonable results can be obtained
using the theoretical approach. A basic design of energy absorber of the coupler using
the concept of tube expansion has been suggested from the theoretical solution, and
evaluated by ABAQUS. The suggested design showed a reasonable result as a basic
design. However, this design must be improved with the aid of experimental tests in the
detailed design step.
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Abstract

This paper describes a dynamic model for gear transmissions acting around a static
working point, and taking into account the complete mechanical components. Gearbox
casing behavior is introduced by using substructure analysis, and a tangent stiffness
matrix could be defined for each roller body bearing element. This model is used to
study the dynamic behaviour of an automobile gearbox. The first studies highlight the
influence of the roller bearings on the dynamic behaviour of the kinematic chain and
show that the bearings have to be modelled accurately. In a second step, the flexible
casing of the gearbox is taken into account and dynamic couplings between
deformations of the casing and the kinematic chain are evaluated. As a result of these
works, global dynamic behaviour of automobile gearboxes can be provided and
consequences of technological choices could be evaluated.

1. Main Principle and Hypothesis

1.1. INTRODUCTION

Mechanical system behaviours have to be defined early in the design process since
prototype tests and development times must be reduced. Therefore, numerical models
and computation tools have to be developed in view of predicting these global
behaviours. Thus, both mechanical behaviour rules and Product Design evolving
constraints must be included with the proposed global model. Actually, the matter is to
get "downward multileveled" models, which are easily adaptable to geometry
enrichments. The aim of this paper is to present such numerical models, allowing both
static and dynamic simulations of global gearbox behaviours, in order to improve their
performances in terms of power transmissibility and noise levels. Such power
transmission mechanisms are made of both "structural elements" - shafts, casing etc -
with linear elastic behaviour and "technological linking components” - rolling bearings,
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gears, etc — with non-linear behaviour. Thus, numerical models built to study their
global behaviour have to take into account those elements as a whole.

In gear transmissions, vibratory studies aim at understanding how vibrations and noise
are generated and propagated. It is common to consider the case of small linear
perturbations about a static constant load, and to evaluate the vibratory behaviour
around the associated equilibrium point -fig.1-. In such models, behaviour of the
technological components such as gears and bearings is linearized and meshing acts
without contact loss. System components are divided into structural elements modelled
by standard finite elements, and linking elements for which specific models were
developed.

Non-linear static field Dynamic field
Non linear rule : S -
— ~_ F=g(d
Force F=g(d) F=e@
A . Tanigent to g(d)
; ' 10
/ Dynamic load atd \\d
Fe :{static load . ‘{ari?ticins \
; 5]5"' ______
‘‘‘‘‘‘‘‘‘‘‘ \ 2 4 Dlynamic
Displacement ¢ displacements

d°: static bending

Figure.1l : Static and dynamic field positions.
1.2. DEFINITION OF A STATIC WORKING POINT

Studies performed for several years on complex mechanisms, led to the development of
global static models with high performance and which incorporate non-linear
components of the gearbox. Particularly, some specific finite elements were developed
for modelling static behaviour of rolling bearings [10, 6, 12]. These new elements take
into account the non-linear contacts between each rolling body - ball or roller - and
inner and outer races [5]. Over and above the static results brought by this model -
contact angles under load, casing stress and load distribution ... -, these specific
elements allow to associate a tangent stiffness matrix to each rolling element. This
matrix is representative of rolling element behaviour around one static working point
(Fig.1). Practically, it is a way to "linearize" the non-linear behaviour of the bearings.

1.3. DEFINITION OF DYNAMIC MODELS AND TOOLS FOR ANALYSIS

1.3.1. Structural Elements

Shafts are modelled by standard Timoshenko beams and casing "dynamic flexibility is
introduced by "macro-elements" obtained by dynamic substructures analysis [9]. For
non-structural elements, mass and inertia effects are introduced by standard condensed
elements.



61

1.3.2. Gear elements

Some previous work [1,2] showed that for global static studies, the mesh interface of
the cylindrical helical gears can be modelled by unidirectional springs at the pitch point
along the pressure line. The value of this spring depends on the static load, and it can be
assessed numerically [1,8,11]. In automobile gearboxes, cylindrical pinions and wheels
can be assumed to be rigid bodies except in the contact area. Then specific elements
connecting a node of the driving shaft to a node of the driven shaft were developed.

1.3.3. Bearing elements

Bearings are modelled by the tangent stiffness matrices obtained during the static
computation step. For each rolling body, the computed 10x10 full matrix connects an
outer ring node to the corresponding inner ring node; of course, axial rotational degrees
of freedom (d.o.f.) of the bearing are not concerned. This matrix takes includes the
bearing geometry, and the flexibility of rings, shafts and housing.

Figure 2 : Dynamic model of linking elements.

1.3.4. Definition of numerical tools for analysis

As a first step, dynamic studies focused on the eigenmodes of the model in order to
evaluate the degree of precision to give to each numerical component, and to estimate
the influence of the various technological components on the global dynamic behaviour
of the gearbox. To do that, appropriate analysis tools and numerical criteria are defined.

The first one is the M.A.C. (Modal Assurance Criterion) matrix, also called modal
correlation matrix. It is often used to compare two sets of eigenvectors Y1 and Y2 - for
instance in numerical and experimental updating procedures —. This matrix allows to
quantify the correlation between two vectors with a single percentage number.

Let : Y' =1[y}...y---¥n]  be the first set of eigenvectors

and Y? =[yl...y2...y}%,] be the second set of eigenvectors



62

The MAC matrix associated to the former set of vectors is defined by :

KCARR
(MA C)i,j = R (1)
A
In order to make them more legible and easier to interpret, the MAC matrices are
subsequently figured in a two dimension form with a color map scale.

The second numerical tool used is the modal energy analysis of eigenmodes. This
energy sharing gives an evaluation of the various elements influences on modal shapes
of the system [9, 7, 3].

2. Studies of the gearbox kinematic chain

2.1. MODEL

The following dynamic analysis were performed on a five speed medium size
automobile gearbox. The technological arrangement and details of this gearbox are
shown in figure 3. The input power is applied on the right end of the primary shaft
supported by two tapered rolier bearings noted By, and By,. This shaft transmits power
to the intermediate shaft through one of the 5 cylindrical gears labelled G, to Gs which
act independently according to the desired speed ratio. The reverse speed gear is not
considered in this presentation. The intermediate shaft is supported by a ball bearing
labelled B, and a cylindrical roller bearing noted B,;. Power is transmitted to the
output shaft through cylindrical gear Gy, which is always in mesh. This shaft is
supported by two taper rolling bearings labelled B3, and B;,. The output shaft is
constituted by a differential system which is not active in this study, and so is ignored.

A e

- \\\\\ﬁ‘ri-_\'

m L({ —

[

Figure. 3 : Technological arrangement and kinematic chain model of the studied gearbox.

In a first step, the casing dynamic behaviour is not considered and the outer rings of
rolling bearings are fixed. The static working point is calculated for a given gear ratio
and a given loading torque applied on the "right side" of the primary shaft. The axial
rotational degree of freedom of the end nodes of the output shaft are fixed.
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2.2. INFLUENCE OF THE ROLLING BEARINGS

Earlier work has revealed the importance of rolling bearings in the global dynamic
behaviour of gear transmission [1,10]. The following diagram shows the percentage of
potential modal energy in the rolling bearings for the first 19 eigenmodes
-< 2600 Hz - of the kinematic chain of the gearbox described above.

50 ¢ & '

0 5 10 15 20
Eigenmode number
Figure.4 : Percentage of potential modal energy in bearing elements for the third speed ratio.

For the largest part of the eigenmodes, at least 45% of the strain energy is located in the
rolling bearings (Fig. 4.). This large contribution of the bearings to the deformation of
the kinematics chain implies that the bearings are properly modelled. In order to
quantify the degree of precision to give to this modelling, comparative studies were
performed with various modelling choices. It appeared that the use of purely
unidirectional stiffness elements (model n°2) is insufficient to describe properly the
global dynamic behaviour of the mechanical system. Indeed, the eigenmodes computed
with scalar stiffnesses (model 2) are different from those computed with full tangent
stiffness matrices (modell) : the frequency distributions are quite different (Fig.5a) and
the eigenvectors are not collinear (Fig.5b).

Model 2 Eigenmodes

15
b e

i
11T

Frequency (Hz) pi—=
Fig.5:  Comparison of the eigenmodes computed for two numerical models of bearing

These differences can be explained by the fact that the couplings between the 5 d.o.f. of
the rolling bearings are not taken into consideration by scalar stiffness elements. From
the strain_energy point of view, the eigenmodes which are energetic for the bearings
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have lower frequencies in model 2 than in model 1. All these noteworthy differences
could make the use of modal or pseudo-modal methods inconvenient for computing
mechanism dynamic responses if the bearings are not accurately modelled.

An earlier work [5] has shown the influence of the real static environment of the
bearing on the static results. It appears here, that the use of global static models to
compute the tangent stiffness matrices rather than local models with rigid environment,
changes significantly the dynamic results.

2.3. INFLUENCE OF THE MEAN VALUE OF THE MESHING STIFFNESS

As mentioned previously, the meshing is modelled by a scalar constant spring whose
value corresponds to the mean meshing stiffness which can be accurately estimated
with finite element methods [11, 7]. Some previous work - not detailed here — has
shown that, for values in the range of 5.10° N.m to 10"> N.m, the modal results remain
unchanged: frequency variations lower than 5% and MAC criterion very close to 1. The
use of lower values leads to an significant decrease of eigenfrequencies and to the
modification of eigenvectors. From the energy point of view, the decreasing of meshing
stiffness leads to the appearing of modes energetic for the gears. However, the global
behaviour of the model is less sensitive to the mean meshing stiffness value than it is to
the rolling bearing modelling options discussed above.

3. Dynamic Influence of the Casing

3.1. PRINCIPLE

The dynamic influence of the casing is introduced into the earlier model by mass and
stiffness matrices obtained by dynamic substructures analysis [9]. A large casing
dynamic model - about 100 000 d.o.f - is reduced and only 672 d.o.f. are kept. The
first 19 eigenmodes of the casing with fixed junction d.o.f. are used to reduce the initial
casing model to a smaller one. The former kinematic chain is assembled to the reduced
casing model by using the rolling body stiffness matrices defined earlier.

3.2. DYNAMIC COUPLINGS BETWEEN CASING AND KINEMATIC CHAIN

Computation of the eigenmodes of the complete model shows that modal density is
important such as there are 30 modes with eigenfrequencies below 1.400 Hz. The
modal energy analysis performed on these eigenmodes - Fig.6 -, consists of
computing, for each one, the percentage of strain energy located in the casing and in the
kinematic chain.

This analysis shows the couplings between the modal deformations of kinematic chain
and casing. Indeed, for each eigenmodes at least 10% of the strain energy are located in
the casing, and there is no eigenmode of the kinematic chain alone. On the other hand,
there are some "casing modes" where the whole strain energy is located in the casing as
mode 3 for instance.
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Strain energy in the kinematic chain Strain energy in the casing
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Figure.6 : Percentage of strain energy in function of the frequency in the kinematic chain and in the casing.

4. Conclusion

The aim of this paper, was to present a global numerical dynamic model of automobile
gearboxes in a CAD environment. This model was performed in order to reduce noise
and define dynamic transmission conditions. The dynamic behaviour is evaluated
around of a static working point, defined for a given static load, where non-linear
behaviour of the technological linking components can be linearized. Practically, the
proposed model is based on the finite element method (F.E.M.) for small displacements.
Structural elements are modelled by usual finite elements and several specific finite
elements were developed to introduce the behaviour of the technological linking
components. A particular attention was brought to rolling bearing behaviour. This
model allows to determine eigenmodes and dynamic responses of the complete gearbox
and appropriated analysis tools and numerical criterion were defined.

The first studies presented are achieved on the kinematic chain of the gearbox. They
highlight the influence of the roller bearing on the global behaviour, and so how
important it is to model them accurately. In a second step, casing dynamic flexibility is
introduced and dynamic couplings between casing and kinematic chain are evaluated.
At the end of this work, which is validating by experimental studies, global dynamic
behaviour of automobile gearboxes can be provided and consequences of technological
choices could be evaluated.
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1. INTRODUCTION.

In order to increase security, to reduce delays of airplane maintenance and to lower the repair costs, integrated
monitoring could be envisaged in a permanent or semi-permanent way, for the evaluation of the degradation
state of composite structures. This could furnish information about damage state.

The embedment of sensors within composite structures gives the opportunity to develop Smart Materials for
Health and Usage Monitoring Systems (HUMS).

The choice of the monitoring system must be guided by the respect of the material integrity through its ability
to receive sensitive sensors. In particular, the loss of mechanical properties and/or failure strengh due to the
presence of the insert must be minimized. Another selection criterion of the system is the reduction of the
sensor number for different imperatives: cost, connectors reduction and complexity of the electronic equipment.
Because they can propagate over long distances, Lamb waves are totally adapted to the inspection of large, thin
plates with a very small number of transducers. These waves are usually generated by mode conversion at the
interface using an angled transducer. This method of excitation, generally known as the “wedge method”,
requires a transducer with a plastic or perspex body providing the suitable angle of incidence. This body makes
it impossible to significantly reduce the height of the transducer. The interest in Smart Materials, especially
health monitoring and impact damage detection on composite laminates using Lamb waves, justifies the
development of a thin transducer which may be integrated into the structure. Hence, the priority is to reduce the
height of the transducer, and the use of a comb-like array of piezoelectric elements makes it feasible.[DEM.95]

Longitudinal, transverse and Rayleigh waves are the solution of the waves propagation equation in

infinite solid elastic media. On the contrary, Lamb waves are the solution of this equation for limited media,
and they must verify the limit conditions fixed by the medium dimensions.
These waves may propagate in plates with a thickness value nearly equivalent to the wavelength, and are
generated under oblique incidence using a conversion mode. There are mainly two kinds of waves,
antisymmetrical and symmetrical, with a propagation direction parallel to the surface of the plate. Their
associated displacement presents a longitudinal and transverse components. Two zero modes, A, and S, exist at
all frequencies, but higher modes had switch frequencies f, given by the following formulae:

for symmetrical modes: for antisymmetrical modes :
f.=nv,/2e wheren=135.. f.=nv,/2e where n = 1,3,5....
andf,=nv,/2e where n =2, 4, 6.... and f, =n v,/ 2 e where n=24,....

where v, is the longitudinal velocity, v, the transverse velocity and e the sample thickness. As the velocity of
the different modes depends on the frequency, Lamb waves have a dispersive feature. The usual method of
generation relying on a transducer that cannot be reduced to a low thickness (oblique incidence transducer), so
the development of a thin transducer using a comb-like array of piezoelectric elements has been investigated.
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The integrated design process of Smart Materials needs first of all a good understanding of the Lamb
waves propagation conditions inside the plate structures as a function of their thickness. From these conditions
it is possible to define the working frequency. This parameter, thus defined, it is then possible to study the
optimal dimensions of the piezoelectric element to embed in order to generate non dispersive waves.

The study of the sensor dimensions involves constraints on the embedded PZT element which induce a
mechanical behaviour of the structure with the insert which must be optimized. So three different tools have
been used in this work to optimize the final performances in terms of sensibility to impact detection of the
demonstrator. The following paragraphs give, after a short description of the design methodology, the different
results leading to the definition of a composite structure with embedded actuators for impact detection.

2. DESIGN METHODOLOGY.

The development of miniaturized actuators for defect and impact detection involves an integrated design
methodology taking into account the study of :

- the Lamb waves propagation,

- the insert vibration modes,

- the mechanical behaviour of the structure with embedded insert.

The following figure (fig 1) describes the different studies realized in order to perform a demonstrator proving
the feasibility of a Health and Usage Monitoring System.

Analytical modelling

MATLAB
Numerical Numerical modelling Prodpagation
modeliing ATILA ANSYS study
Weakening + ‘
Propagation due to insert Passive mode : Active mode :
study uantification mpacts defects
l detection Jetection
L amaging f /
ritera

Optimat
transducer
size

definition

Optimal insert
size.

Prototyping

PZT sensor
study

v

Demonstrator
manufacturing

Non

destructive
evaluation

Fig.1: integrated design methodology for Smart Materials.
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Three kinds of modeling have been investigated: an analytical one for Lamb waves propagation study
(MATLAB®), and numerical ones (Finite Element Codes) for the study of mechanical behaviour of the structure
(ANSYS®), and for the study of the insert (ATILA®). The theoretical results lead to the definition of
geometrical parameters for the demonstrator prototyping.

Lamb waves propagation requires a deep understanding of the dispersion relations in the material, in order to
determine the geometrical parameters of the insert for a set of frequencies, the following paragraph gives the
main results concerning this study.

2.1 ANALYTICAL MODELING.

The first method of excitation, already described by Viktorov [VIK.67] as the comb structure method,
consists in generating a set of normal perturbations, distributed periodically over the surface of the plate with a
spatial period equal to the excited Lamb wavelength. To determine the geometrical parameters of the sensor, the
first task to complete is to calculate the appropriate wavelength, corresponding to the less dispersive mode in
the material at the working frequency.

The carbon-epoxy composite plates used in this study have 16 and 32 layers. The ply lay-ups for these
laminates are [05,], [05/90,/0,/90,]5, [45,/0,/-45,/90,1,, and [45/0/-45/90},,.

An extensive literature on methods to calculate the dispersion relations in anisotropic media is available (
Nayfeh [NAY.89a], Nayfeh and Chimenti [NAY.89b], Datta, Shah, Bratton and Chakraborty [DAT.88], Lowe
[LOW.95]....). But few papers take the disparities in mechanical properties between layers into account and
develop the calculations for every lay-up.

This study relies on the classical method, i.e. the resolution of a matrix equation which describes stresses and
displacements in each layer of the laminate and the transfer relations between them. This equation leads to
characteristic functions whose roots bring the results. Discussions of the different methods may be found in
[LOW.95].

The standard dispersion curves (phase velocities as a function of the frequency-thickness product) show the less
dispersive mode likely to be generated in a frequency range. Figure 2 shows these curves for the same sample.
These curves allow the determination of the frequency for the generation of Lamb waves in a specific plate. As
soon as the frequency range is imposed by the piezoclectric element, the following modeling will permit to
define the transducer’s geometrical parameters.

10 000 —+

7500 +

5000 +

2500

0 1 | L 3
0,00 0,50 1,00 1,50 2,00

Fig 2: phase velocity as a function of frequency for a laminate

2.2 NUMERICAL MODELING.

2.2.1 Brief description of the Finite Element Modeling (FEM) approach.
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In order to determine the optimal dimensions of the insert for Lamb waves generation, the linear FEM has been

used here with the help of the ATILA code. The FEM is a very powerful tool for modeling complex structures. It

is able to provide the electrical impedance and the displacement field, as a function of the excitation frequency.
The general formulation of finite element transducer modeling is described in many papers [ASS.93,ASS96] and
only the main equations are briefly recalled here. With standard notations :

(=

Ky, -0’ ] (Kol " { -E } )

[l [Kod ?

where U, 4 F and Q are vectors which contain the nodal values of the mechanical displacement, the

electrical potential, the applied forces and the electrical charges, respectively. [Kyyl, [Kuel and [Koe] are the
electroelastic stiffness matrices, while [M] is the consistent mass matrix and @ is the angular frequency (@ =
2xf, f being the frequency). The upper index T indicatcs matrix transposition.

From this matrix, the displacement field U can be computed as follows:

&=

(K- 0 M]U =K, 0 )

Then using the second line together with Eq. (2) the electrical impedance (Z) can be deduced from the following

relation :
-1
uo 3

Minima and maxima of this impedance correspond respectively to resonance and antiresonance frequencies (f
and fy) of the successive vibration modes. The electromechanical coupling coefficient k, is then defined for each
mode as :*

k,=V1- (f./fa)2 @

Finally, it can be noticed that it is possible to take into account losses in the material, by introducing complex
material coefficients suchas : s =s'-js",d=d"-jd", e=¢ ' - j & ", where s,d and € are the complex elastic
compliance tensor, the complex piezoelectric tensor and the complex dielectric tensor, respectively.
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2.2.2 Embedded transducer characterization.

A general rule of ultrasound emission is to excite the emitting element at its natural resonances rather than at
any frequency. This method enables a very efficient conversion from electric to mechanical energy. Electrical
impedance as a function of frequency is a suitable indicator of those resonance modes.

It is now supposed that a transducer is embedded into a composite plate. This plate is a 32-ply [04, 454, 904, -
454]s 'T300-914' composite plate with a 3.85 mm thickness. The transducer is shown in Fig. 3(a). It is a 'P7-
62' (a classical ‘Quartz & Silice' piezoelectric ceramic) PZT cylinder with radius to thickness ratio R/T equal to
1.25 and T =2 mm. As its polarization direction is assumed to correspond to the Z-axis, this one is a
revolution axis, as it is well known for PZT materials (equivalent to 6mm crystalline class). Thus only a two-
dimensional finite element mesh of the ABA'B' section may be used [Fig. 3(b)].
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Figure 4 shows the modeled configuration. The PZT transducer is placed inside a hole machined in the plate and
surrounded by epoxy resin.
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Fig. 5: electrical impedance.

Using Eq. (3), the electrical impedance of the transducer is computed and shown in Fig. 5. From this figure, it
is evident that there are three main resonance modes. The resonance frequencies correspond to natural vibration
modes of the transducer, but modified by the influence of the acoustical loading conditions (embedment). It is
noticeable that, according to the computed strain field in the piezo-element, the resonance which occurs around
435 kHz appears to remain a radial vibration, with the highest coupling coefficient yet (k, = 47 %). Thus the
effect of embedding on the radial eigenmode of the piczo-ceramic does not seem to be a change in its nature,
but only a slight frequency shift and a variation in the electrical impedance modulus, due to the non-zero
acoustical impedances of the surrounding media.

2.2.3 Modes identification

The deformed shape of the structure, that the FEM is able to display in post-processing treatment, clearly puts
in evidence the presence of plate vibration modes at various frequencies. As an example, the real part of the
normalized displacement fields computed at the three main resonance frequencies (435 kHz, 735 kHz and 910
kHz) are given in Fig. 6 (for convenience, only the displacement fields in the plate are represented). It is clear
that Fig. 6(a) corresponds to a *‘purely’’ symmetrical displacement field, whereas Figs. 6(b) and 6(c) correspond
practically to antisymmetrical displacement fields, but with slight interactions between several Lamb modes.
Moreover, the amplitude of the displacement field for the first resonance (435 kHz) is greater than the other
ones.
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(a)

(b)

(c)

Fig. 6: Displacement field.

By the inspection of these computed displacement fields, it is possible to pick out the wavelength 1f, of the
corresponding Lamb waves. Then knowing the frequency, the phase velocity 1, can be determined, according to
the relation : cf, = ILf. Several finite element computations have been performed, varying the excitation
frequency, and thus the corresponding phase velocitics c[, are reported in the dispersion curves of the host
material. A remarkable agreement is shown, allowing an unambiguous identification of modes present in the
late.

?n this part a particular transducer has been considered, but it is interesting to note that other specimens having
the same dimension ratios 2R/T and d/T (d is the host plate thickness) would generate the same Lamb waves
(same phase velocities) at the same values of fd.

2.2.4 Mechanical behaviour modeling.

Due to the manufacturing cost of a composite plate, the mechanical behaviour of structure with embedded
transducer will be studied using finite elements. Two models will be developed: The first corresponds to a plate
without any embedded transducer and the second will represent a plate with embedded piezo-electric elements. In
both cases, the numerical results obtained during a three point bending will be compared with experimental data.
The model (Fig 7) represents the plate using a specific element for multilayer geometry. The element has been
designed to represent multilayered materials (up to 100 layers with different mechanical features). A single
element can represent the different layers of composite materials and the piezo-electric element.

The study has been carried out on the models of instrumented and non-instrumented plates during a three-point
bending.

Fig.7: Numerical model of the plate with insert
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The same load was applied onto the models of both instrumented and non-instrumented plates. A comparison
between the different results highlights the fact that the built-in piezo-electric element does not influence the
deformation of the plate. The results are described and discussed in [BLA.98].

The previous models have lead to the definition of an innovative demonstrator prototyping. The next paragraph
gives the experimental results obtained with an embedded PZT element inside a Carbon-Epoxy composite.

3. EXPERIMENTAL STUDY
3.1 CARBON-EPOXY COMPOSITE DEMONSTRATOR.

The demonstrator has been made in a classical way : a 130 um-thick element has been embedded in the middle
of the plate. It has however the advantage of putting the piezoelectric insert in acoustic load conditions which
are close to those of an inter-ply integrated element. Moreover it allows easier experimentation while validating
our approach.

The embedded transducer beingused is a 10 mm square piezo-electric 130 pm-thick element . Two polyamide
films (Fig 8) are stuck onto the element. Those films allow the electric connection with the outer media of the
plate.

10 mm 6 mm Epoxy

Metallization }hesive

Fiber ]

ﬁ Transducer E——

Polyamide

Epoxy/silver
(th. 12,5 Hm) adhesive
(th. 30 ,,m)
Fig. 8: Schematic description of the sensor

The dimensions of the considered piezoelectric transducer had been chosen as satisfying the following criteria.
First of all, to have a good electromechanically coupling for vibration mode at 400 kHz, the corresponding
radius is 2.5 mm for the P7-62 material (radial mode). Then a thickness of 2 mm has appeared to imply no
interaction between the radial mode and the other vibration modes (thickness and harmonic modes) ; it is easy to
embed in a 3.85 mm thick plate as well. In addition, the FEM has demonstrated that these transducer
dimensions are suited to a good generation of Lamb waves in the host material. Therefore the same dimensions
have been used to build the specimen studied in this section.

As it has been previously said, the compositc plate of this instrumented specimen can be macroscopically
considered as a quasi-isotropic material in the X-Y plane. Thus the surrounding conditions of the piezo-element
are expected to be relatively close in both the experimental and the numerically modeled configurations. So this
specimen aims both at confirming the results obtained with the FEM study, as well as checking the practical
feasibility of using embedded transducers for gencrating exploitable Lamb waves in a relatively realistic
composite structure.
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4. CONCLUSION.

This work has demonstrated the feasibility of generating and detecting Lamb waves in a composite plate,
with bulk-embedded piezoelectric transducers. Moreover, with the help of the FEM, the identification of modes
has been obtained. By selecting the vibration mode of the embedded transducer, it seems to be possible to
selectively privilege the propagation of various Lamb modes.

Future work will consist in the integration of the different theoretical results in a larger model describing
both, the insert vibration modes and the Lamb waves propagation.

The use of an Analog Hardware Description Language (AHDL) will allow the creation of mixed signal models,
modeling both electrical and non-electrical components in complex systems as Smart Materials. The
Mechatronics approach will permit quite an integrated design methodology.

The authors would like to thank Mr BALAGEAS from ONERA for helpful and precious advices.
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ABSTRACT

During machining of aluminium alloy made structural parts, the state of stress
due to quenching may result in non-acceptable deformations. Besides calculating
the post-quenching residual stresses, we develop a numerical method in order to
simulate machining by using the mapped stress from the drop forging onto the
final part mesh.

We then develop a 2D optimization program in order to minimize
deformation during machining, depending on the final part position in the drop
forging part.

Comparison between experimental and numerical results show a good
correlation.

1. INTRODUCTION.

It is desirable that the heat treatment of aluminium alloy made parts should result
in high strength and low residual stresses. However, during machining, these
stresses may give rise to non-acceptable deformations.

In this work, a finite element method is used to simulate quenching and stress
releasing_during machining. Besides, we are developing a program in order to
optimize the final part position during machining.
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2. QUENCHING OF THE DROP FORGING PART.

In addition to structural transformations, stresses develop in the part during
quenching. They result from the temperature gradient between center and surface.
When they become higher than yield stress, residual stresses occur after heat
treatment.

2. 1. Quenching modelisation.

The finite element modelisation of quenching is carried out in two stages:
a/ simulation of heat conduction in the part during the quench cooling,
b/ resolution of the elastic-plastic problem created by the change of
temperature.
Figure 1 shows a 2D section of a drop forging part for which we have calculated
quenching and machining. The 2D mesh, made with I-DEAS code, contains 612
four-node elements, and 711 nodes.

Figure 1 : Drop-forging mesh

2. 2. Thermal calculation.

The material is an aluminium alloy. The thermal conductivity and specific heat
variations with temperature are shown in figures 2 and 3. For heat conduction
calculations, we use DC2D4 elements from ABAQUS code. The initial
temperature is about 400°C. A temperature versus time curve is prescribed on the
mesh surface. The final temperature is about 60°C. At each time step, the
temperature distribution is used as initial condition for the elastic-plastic
computation.
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Figure 2 : Conductivity (W/mm.C®) Figure 3 : Specific heat(J/g.°C)

2. 3. Mechanical calculation

We use CGPE6R generalized plane strain elements with reduced integration. The
variations of mechanical parameters with temperature are taken into
account:Young’s modulus, plastic slope, yield stress [ARC. 80] (figures 4 to 6).
The expansion coefficient evolution has been measured by AEROSPATIALE
(figure 7).
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Figure 6 : Yield stress Figure 7 : Expansion coefficient

Comparison between X-ray measured residual stresses and finite elements
calculations has shown a very good correlation. We can see in figure 8 that, at the
beginning of cooling, stresses are tensile on the surface and compressive in the
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center of the part. At the end of cooling, this is reversed;figure 9 shows the residual
stress distribution accross the thickness.
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Figure 8 : In-core and surface stress S33 Figure 9 : S11 after quenching

in section AB

3. STRESS FIELD MAPPING AND MACHINING.

During machining of the drop forging part, the state of stress due to quenching
may give rise to deformations which have to be rectified in order to fit the
dimensional tolerances.

We then developed 2D and 3D numerical modelization of machining which only
needs to know the final part mesh position in the drop forging part mesh.

3. 1. Machining modelization.

We make a stress field mapping from the quenched drop forging part mesh (E)
onto the final part mesh (P), which we want to obtain after machining (figure 10).

(E) : Drop

forging \

part mesh

(D):deformed
P):wished part after

part mesh equilibrium

Figure 10 : Machining simulation method

Reactions F;, equivalent to the action of (E) on (P), are calculated on the boundary
of (P). We then calculate an equilibrium by canceling F;.

We suppose here that the material remains elastic with small displacements during
machining. We then get the deformed machined part geometry and stresses.

This method allows to'easily estimate the influence of (P) part position in (E).
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3. 2. Stress field mapping formulation.

This mapping is carried out between Gauss points of both meshes. We have used a
weighted average method, which is easy to perform. For every M’ Gauss point in
the final mesh (P), we calculate the N nearest Gauss points in the initial mesh (E).
For each M’ point, we calculate the weighting coefficient f(d;) depending on the
distance di=d(M;M).

The stress value at point M’ is a weighted average of the M; stress values:

o (M )=3 f(d)o (M )/% f(d)

We have used a Gaussian weighting function: f(d;)=Exp(-kd;’)
where k coefficient is calibrated on the farthest neighbour distance:
Exp(—kdmaxz)= € , with for example, € =107
Another field mapping which can also be used is the diffuse approximation method
[NAY. 92]:

If X=(x,y,z) is the point coordinates vector where we have to calculate the
stress field G, we approximate this field as:

G (X)=<p(X)>{a}
where p(X) (for example <1,x,y,xy>) is the chosen polynomial base, {a} the
coefficient vector of the polynomial to be determined. Polynomial p(X) is an
approximation of G (X) in the neighbourhood of X, by the least square method.
The {a} vector solution is given by minimizing the following function with respect
to a;:
N 2
Z W(Xi)[<p(Xi)> {a} - o]
i=1
where: - Xi are the N nearest neighbours of X,
- W(X;) = Exp(-kd?), di = d(X, X)), with W(Xpae) = €
Minimization is equivalent to solving the linear system:

[A] {a} = {b} , with:

N N
= wxXp{pE D)) =S wx i {pxi}o;

i=1 i1

3. 3. Machined part equilibrium.

After stress field mapping, each Gauss point of the final part mesh is assigned with
an extrapolated stress field. This forms an initial condition for an elastic calculation
in ABAQUS code. We thus get the final part deformed shape and the stress field
after machining.
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3. 4. Application.

The part geometry that we want to get after machining is given on figure 11. The
calculated deformed shape is shown in figure 12.

‘ fi ‘ |=5mm

ST Tom " " - SSSESPUNY r

Figure 11 : Machined part mesh in the drop forging part

The machined part deformations are measured with respect to a shape rigging
template.

These measurements have shown that experimental displacements are in a good
agreement with calculated ones. Stress field distribution is similar to the drop
forging one after quenching but stress values are lower.

4. MACHINED PART POSITION OPTIMIZATION IN THE DROP
FORGING PART.

Experimental and numerical investigations have shown that the machined part
deformations depend on its position in the drop forging part (figure 11) [ABI. 96].
We have then developed a 2D computer program in order to calculate the
machining position which minimizes the final part deformations.

4. 1. Method.

The optimization problem is posed as follows:
- the drop forging part geometry being fixed, with a 2D
calculated residual stress field,
- under the constraints related to the drop forging part contour
(the final part mesh must remain in this contour),
- minimize the following U function (global displacement):
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N
U(dx,dy) = %\I z /u%x + uizy
i=1

where :- N is the number of nodes on machined part contour,
- u;, and vy, are these nodes displacements after a machining simulation.

The optimization parameters are the increments dx and dy on the final
part center of gravity position. For each increment (dx,dy), we calculate the final
mesh nodes coordinates, with respect to the drop forging part mesh. Then we carry
out a machining simulation and evaluate U.

U minimization is made using the SiDoLo parameters identification code
[PIL. 91]

4. 2. Application.

We have applied this optimization algorithm to the part shown in figure 11.

The initial stress field results from the quenching simulation described in section 2.
3.The deformed part for the initial machining position is given in figure 12.
Optimization calculation results are given in figures 14 to 16 which show
respectively dx and dy parameters evolution and U function during iterations. The
algorithm allowed a convergence towards the minimum U in 19 iterations.

NU value for the initial machining position is NU=75.30mm. After optimization,
we have NU=30.45mm, which represents a decrease of 56.70%. Figure 13 shows
the deformed machined part mesh after optimization.

Deformed mesh |

- x Original mesh
4 \.*" '
Original mesh g f Deformed mesh
Figure 12 : Deformed mesh before optimization Figure 13 : Deformed mesh after optimization
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Figure 16 : NU function evolution during optimization

5. CONCLUSION.

Quenching modelisation in 3D or 2D-generalized plane strains allows the
computation of residual stresses in agreement with X-ray diffraction experiments.

The numerical modelisation of machining only needs to know the final
part mesh position in the drop forging part mesh. Application to an industrial part
has shown a good agreement between calculated and measured deformations.

We have developed a 2D optimization program which enables to calculate
the machining position which minimizes the final part deformations. This
integrated modelling system will help understanding the residual stresses influence
on distorsion and improve the design of industrial parts.
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1. Abstract

The design of new cars requires the satisfaction of ever stricter safety standards defined
by certification regulations and to match the continuously growing attention of the
customer for safety. Hence, it is necessary to improve every component of the vehicle
to achieve better performance. An effective component in reducing loads transmitted to
the driver chest in frontal crashes is the deformable steering wheel column, capable of
collapsing with high energy absorption while reacting with little axial loads. The
controlled collapse of the column can be achieved by inserting a corrugated tube. To
achieve optimum performance it is necessary to find the proper value of its geometrical
parameters. Aim of the work is to show how the use of the structural optimization
approach based on the response surface methodology is an effective strategy to
optimize such a component.

2. Introduction

Structural crashworthiness design of vehicles has two main goals: to obtain a strong,
undeformable survivability cell for the passenger compartment and to provide a series
of parts able to deform while absorbing and dissipating energy in a stable and controlled
manner. In this second group of passive safety devices, some should dissipate the
kinetic energy of the vehicle reducing quickly but gradually its initial speed and others
should collapse, thereby reducing the loads transmitted to the passengers.

One of the main problems for driver safety is the impact of his chest with the
steering column. Seat belts and airbags strongly help to this end but in some occasions
are not sufficient to avoid a severe impact. Furthermore, even if the impact with the
inflated airbag is light, it is desirable that the airbag does not transmit excessive loads.
In order to limit the force transmitted through the airbag from the steering wheel or by
the steering wheel itself to the driver’s chest, it is necessary to use a collapsible steering
wheel column. This effect can be obtained by introducing in the steering column an
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intermediate component able to collapse with limited loads but with a torsional strength
and stiffness appropriate for the steering system task in normal use conditions. Such a
component can be a simple tubular member, which is known to be an efficient energy
absorber [1, 2, 3]. In addition, to limit the maximum load without reducing the energy
absorption capability, the tube can be suitably shaped.

A simple and effective method proposed to obtain such a behavior is to pre-deform
the tube with a series of axisymmetric enlargements (bulges) similar to the
axisymmetric folds that occur in the axial collapse of tubes [4]. This element is known
as “corrugated tube” or “bellows”. The bulges are usually obtained by plastic
deformation of a simple circular tube in a die under internal pressure applied with water
or other liquids (hydroforming).

Once the overall length of the bellows, its base diameter and material are fixed, the
design parameters are the length of the bulges, the external diameter of the
enlargements and, consequently, the number of enlargements (which is in turn related to
the total length and to the length of the folds). These geometrical parameters influence
the global behavior that is evaluated in terms of the energy that the component can
dissipate in its axial collapse and of the maximum sustained axial load. These two
structural indexes can be combined in one further parameter, ratio of the previous two,
known as the load uniformity parameter (LU).

This work shows the analysis of a corrugated steel tube when changing the
geometrical parameter with the objective of obtaining a component with the minimum
load uniformity parameter (the ideal value being one). Structural analysis is performed
using an explicit finite element code.

The aim of the work is twofold: first, to design an optimized component for energy
absorption and, second, to show the usefulness and efficiency of an optimization
algorithm. The optimization procedure used in the work is a steepest descent algorithm
based on the response surface methodology that has proved to be very efficient in the
case of highly non-linear problems [8, 9].

3. The corrugated tube used as an energy absorbing device

The subject of this work is the so-called “corrugated” tube or bellows shown in
Figure 1. The tube is defined by external radius r,, internal radius r; total length /,
length of each bulge p, number of bulges » and wall thickness ¢. It’s worth noting that
the bellows internal radius 7; is equal to the outer radius of the two cylindrical ends of
the tube, whereas the internal radius of the tube at the ends is equal to r; - z. The base
values for these dimensions were 30 mm for internal radius r;, 35 mm for external
radius r,, 150 mm for total length /, 7.5 mm for bulge length p. The base number of
bulges was 12.

Changing design parameters during the optimization process, there is a certain
number of constraints linking the number of bulges to their length. In particular the
number of bulges was determined by the condition that the total length of the
“corrugated” part,does.not.exceed,the initial length, equal to (/ - 2 ;). Hence, to ensure
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that the number of bulges is an integer number, the length of the straight ends can
change during optimization.

27‘,’ - tt-—-—-—1" - ettt — - - 2re

Lol Lo b

Figure 1. Scheme of the corrugated tube

The next problem deals with the bulges’ profile. The more obvious choice would be
to use circular arcs as generating curves (so the bulges are formed by portions of
circular toroidal surfaces). When considering surfaces of revolution obtained from
circular arcs connecting each other, three cases may occur as shown in Figure 2. If
(ro- r;) > p/ 2 the profile of one bulge is formed by four arcs, comprising a 90° angle,
connected by a straight line (left diagram of Figure 2). The radius of the arcs defining
the bulge is thus equal to p/4. When (r.-r;) is equal to p/2 the length of these
connecting lines falls to zero, that is the bulge profile is formed by four arcs of p /4
radius each comprising a 90° angle. When (7, - r;) <p/ 2 to have a smooth profile with
tangent curves the included angle must be less than 90° (right diagram of Figure 2).
Hence, angle o and radius r are obtained from the following relations:

a =2arctanM (1
p
p2 Ve =1
r= + (2)
16(r, -r,) 4

" s
\ "
~"
\./

Figure 2. Bulge profile
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The structure was studied using a simplified finite element model, taking advantage
of the axial symmetry of the problem. The simplified finite element mesh models a
single axial strip of the surface with four-node shell elements (axisymmetric shells are
not a feature of the DYNA3D code). Proper constraints coerce the mesh nodes to move
only in the axial and radial directions. The load was applied by two rigid walls, one
fixed and the other moving against the structure with an initial speed of 13.89 m/s
(50 km/h). Figure 3 shows the finite element mesh of the base bellows configuration
together with a sequence of plots taken at different times during the crush and a
diagram showing the force-displacement characteristic.
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Figure 3. Finite element mesh of the base configuration with collapse

4. The optimization algorithm

The optimization algorithm used in the work is based on a steepest descent procedure
[5] and uses the response surface methodology [6, 7] to establish the search direction
(8, 91.

In the algorithm [9] the initial step consists of a complete plan of experiments (two
levels for each design variable) plus a central point. According to the results of the
response function evaluations, a regression plane is computed and the direction opposite
to the gradient of the plane is used as the search direction (if the value of the objective
function at the central point of the plan of experiments is less than the values obtained
at the other four points, a new plan centered on the same central point but of half the
original size is used). New points are evaluated along the search direction until the
objective function value does not increase again. In this case a half size plan of
experiments centered in the last point evaluated before the objective function increase is
studied and the algorithm restarts with a half length step.

The search algorithm stops when either the variation of the objective function
between two consecutive steps is less than a predetermined value €, or the variation in
the variables (the size of the plan of the experiments) is less than a predetermined value
€, or the number of function evaluation exceeds a limit number.
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The algorithm as previously described is an unconstrained search procedure.
Constraints to the values of the design variables are therefore taken into account using
penalty functions. Penalty functions used in this problem add to the objective function a
quantity proportional to the cube of the distance of the point outside the admissible
region from the boundary of the domain.

5. Results

In order to better understand the problem, a first evaluation of the structure behavior as
a result of changing the geometrical parameters was done (Figure 4). The two variable
parameters were fold length p and external radius r.. The results of this parametric
study are the maps of the three structural parameters, load uniformity LU, maximum
force F,., and average force F,,,, respectively. The fold length p was let to vary from
2 to 20 mm and the external radius 7, from 15 to 25 mm (when r, is equal to 15 mm the
bellows is a straight circular tube and the structural parameters are obviously unaffected
by length p).

A plain observation of the plots of Figure 4 shows that the maximum load is roughly
constant everywhere except in the region where p is minimum and r, maximum. The
maximum load shows a “valley” when r, is between 17 and 19 mm. The average load is
minimum when p is 17 mm and 7, is equal to 25 mm. The surface representing load
uniformity is somewhat complicated. It is possible to observe a global decrease of the
load uniformity parameter with decreasing external radius r,. However, in the region of
greater external radius (r, =22 + 23 mm) the influence of the length of the folds is not
regular and there are many local minima. The region with 7, from 16 to 18 mm is
roughly flat with a local minimum at p = 10.5 mm, r, = 16.5 mm and a global minimum
in p =4.5 mm, r,= 16.5 mm. All these local minima are very “dangerous” when using
an optimization algorithm (especially in the region of greater external radii) because it
is necessary to avoid their “attraction”: the algorithm should not fall in this point and
must be able to go further.

Figure 5. shows the results of numerical optimization. The starting point was in
p =10 mm r,=21 mm and the size of the first plan of experiments was 16 mm for the
length of the folds and 8 mm for the external radius. The starting point and the size of
the plan of the experiments were chosen in order to explore an adequately large region
of the search domain. The risk of using a smaller plan is that of falling into a local
minimum region. With a larger plan there is a greater probability of avoiding this
problem. Actually, a new point is examined in (p, r,) =(5.66, 17.08) mm. The next
point in the search direction is outside the admissible region (that is, it would
correspond to an external radius lower than the internal radius of 15 mm). Hence, the
algorithm moves back and examines a new plan with size equal to half the size of the
initial plan. Afterwards, as it is not possible to reduce the objective function value in
this way, a new reduced plan of experiments is analyzed. The algorithm stops because
the final point (the solution) in (p, r,) =(3.75, 16.30) mm (with LU = 1.778) decreases
the objective function value by less_than the required tolerance with respect to a
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previous point in (p, r,) = (3.66, 16.33) mm (with LU = 1.796). The objective is reached
in 21 steps.

LU
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Figure 4. Influence of the geometry on the structural behavior of the bellows

It should be pointed out that the algorithm does not ensure a proper solution if
incorrect starting parameters are chosen. In particular, it is important to use a
sufficiently large initial plan of the experiments able to find data about the global shape
of the surface. It has been verified, for example, that with a smaller initial plan centered
in (p, r.) = (6, 24) mm with a variation of 6 mm for the length of the folds and of 2 mm
for the external radius, the algorithm converges to the local minimum in
(p, r.) = (2.40, 23.39) mm. The same result is obtained by starting the algorithm search
in (p, r.) = (10, 22) mm and with the same initial variation of the design parameters.
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Figure 5. Results of the optimization

6. Conclusions

The passive safety of a car driver can be improved by introducing in the steering wheel
column a deformable part able to reduce the loads transmitted to the chest during a
t able to achieve this goal is a simple thin
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tube. The behavior of a tube for this aim can be improved by suitably pre-deforming it
in the shape of a corrugated tube.

The geometrical parameters of the corrugated tube strongly influence its structural
behavior especially for what concerns the load uniformity. In fact, load uniformity in
fact can vary from a minimum of about two to a maximum of ten and more. The
geometrical configuration corresponding to the minimum load uniformity parameter has
been obtained from a parametric study of the component. This investigation showed
that efficient sizing comes with a length of the folds about one third of the diameter of
the extremities and an external diameter 1.1 times the diameter of the extremities.
Furthermore structural behavior is scarcely affected by the fold length but highly
sensitive to the increase of external radius. This result is, however, valid for the current
thickness over diameter ratio.

The same result can be obtained through the use of an efficient optimization
algorithm. The response surface of the problem is very irregular and a classical
minimization procedure would presumably fall into a local minimum. If a complete
parametric study requires scores of structural analyses, which are in this case non-linear
dynamic simulations, the optimization algorithm proposed herein can achieve nearly the
same result in about twenty evaluations of the structural behavior.
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1. Introduction

Our aim is to propose design-making tools, which can be introduced in
Computer Aided Design software. Thank to the analysis of the design pro-
cess of a known mechanical system, we can formulate the mechanical de-
sign problem as an optimization problem, called problem of optimal design.
The latter contains non-linear equations, inequality constraints and mixed
variables that are continuous and discrete. There are also interdependent
discrete parameters whose values may be taken in normalized tables and
which directly depend on the choice of one of the discrete variables. Some
problems of optimal design have been solved with a method using the aug-
mented Lagrange multipliers, combined with a branch and bound algorithm
[5]. In order to calculate the functions gradients, interpolation functions
have been used to bind the discrete parameters to the discrete variable, on
which they depend. Good results have been obtained for many design prob-
lems. However, for some complex structures, we can not obtain a simple
analytical expression relating the different parameters to a discrete vari-
able. The functions gradients can not be calculated so that classical meth-
ods can not be used. In this paper, we propose to use genetic algorithms
(GAs) to solve these difficult problems of optimal design. The genetic al-
gorithm is a recently emerged heuristic optimization technique, based on
concepts from natural genetic and guided by the model of Darwin. The
algorithm differs from traditional optimization methods by the fact that
it does not require derivative information. It just requires the value of the
functions at different points. This method is not sensitive to problem non-
linearity, non-convexities, and it can solve problems with mixed variables.
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We are able to directly use the tables with the normalized values of the sec-
ondary discrete values. First, we present GAs, the classic genetic operators
and other genetic operators which can enhance their performance. Then,
problems of optimal design are presented and the computational results are
given. Finally genetic operators, different representations are presented and
conclusions are stated.

2. Genetic algorithms

Early implementations and theoretical analysis of the genetic search method
are credited to Holland in 1975 [4]. Genetic algorithms were originally de-
veloped to simulate adaptation as in natural systems. A good review on
GAs can be found in {3],[7] .

2.1. REPRESENTATION

Contrary to the other methods, GAs do not use a single point but a popula-
tion of points called individuals. Genetic algorithms use a binary represen-
tation of individuals as fixed-length strings over the alphabet 0, 1, which are
analogous to chromosomes in biological systems. Each string represents a
solution point in the search space. A multivariable coding is constructed by
concatenating individual single variable coding into a complete string. The
strong preference for using binary representations of solutions in genetic
algorithms is derived from schema theorem [4], on which the algorithm is
based. All the design variables are then coded into fixed-length digit strings.
A continuous variable is treated as a discrete variable with small values of
increment.

2.2. FITNESS FUNCTION

In GAs, the fitness value represents the “performance” of each individual.
Individuals with better fitness value will have higher a probability of being
selected as parents. In order to solve our optimal design problems with
many inequality constraints, we have chosen to use an exterior penalty
method because we just have to choose the value of the penalty coefficient.
This coefficient will increase during the optimization process in order to
initially keep a slow exploration of the design space and then force a greater
exploitation of promising designs as the number of trials increases [8].

2.3. GENETIC OPERATORS

Figure 1 shows the main step of genetic algorithms. They start with the
creation of an initial population of designs, usually at random. Each in-
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dividual is evaluated and is assigned a fitness value. A new population is
reproduced on the basis of these evaluations through genetic operators,
selection, crossover and mutation. Thereafter, a newly generated popula-
tion replaces the old one and enters the evaluation stage again as the cycle
of evaluation and reproduction continues. The population improves from
generation to generation. We will now detail the genetic operators, giving
traditional operators [3] and other methods found in the literature.

Figure 1. The genetic algorithm

Selection determines which individuals are chosen for the reproduction.
Classical selection is implemented as a probabilistic operator, using the rel-
,,F a}(ai) to determine the selection probability of
the individual a;, where‘})1 is the number of individuals in the population
and F(a;) the fitness of the individual a;. Rank-based selection methods
are often used rather than using absolute fitness values [6], [7]. The pop-
ulation is now sorted according to the fitness. The probability assigned to
each individual depends only on its position in the individuals rank. In the
application, we will study the classical selection and two different linear
rank-based selection methods ([6], [9]). Crossover is the primary operator
in the GAs. The traditional one-point crossover is achieved by swapping
partial chromosomal materials above a randomly chosen crossing site to
reproduce new offspring. Numerous extensions of this operator, such as in-
creasing the number of crossover points, uniform crossover (each bit is cho-
sen randomly from the corresponding parental bits)... have been proposed
[7]. We will test the classical one-point crossover, a two-point crossover
and the uniform crossover. Mutation in genetic algorithms was introduced
as a “ background operator” of small importance [2]. Mutation alters a
gene value according to a predetermined probability, usually very small.
With the classical mutation, a bit of the chromosome is chosen uniformly
at random. This bit value is then flipped from 1 to 0 or vice versa. With
the uniform mutation, the mutation is applied on a bit-by-bit basis. This
means that many bits of the chromosome can be altered. We have chosen
an' elitist'model of GAs[6]; where the| two best individuals (the best feasi-
ble individual and the individual with the best fitness) are kept from one

ative fitness p(a;) =
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population to the next, so that the best individual never disappears at the
change of generation.

3. Application and results

The previously described genetic algorithms have been applied to three de-
sign problems. The first two problems are not detailed, as their equations
can be found in the literature. The first problem (probl) is the design of a
pressure vessel [9]. This problem contains 2 discrete variables, 2 continuous
variables and 7 inequality constraints. The second problem (prob2) is a cou-
pling with bolted rim [5], formulated with one discrete variable, one integer
variable, 3 inequality constraints and 5 discrete bolt parameters. The last
problem (prob3) is a ball bearing pivot link (see fig.2). The aim is to find
the lengths z;, z2 and the two ball bearings R; and Rs in order to mini-
mize the weight of the assembly composed of a shaft and two ball bearings.
The formulation of the optimization problem requires to list all functional
relations and conditions to describe the behaviour of this linkage. We have
geometrical conditions, stress conditions on the shaft and conditions on the
bearings life span. In order to simplify the formulation, we deal with a nu-
merical example. We want to transmit a power of 23.5kw at 970t/mn for
a nominal life span of 1800 hours. We obtain a problem with 4 variables, 2
continuous (z1,z3), 2 integer (R, Ry) variables, 12 discrete parameters and
10 inequality constraints. In order to solve this problem with the genetic
algorithm, we have numbered the ball bearings from 1 to 28, as they are
ordered in the normalized table. The parameters of the 2 ball bearings are
(Ch,d1,D1,b1,ba1, m1) and (Co,dz, Da, by, dag, ms) respectively, depending
on the choice of the ball bearing. Thus, we have the following formulation,
with X = {Rl,RQ,.’IIl,xQ}:
Minimize the function :
F(X)= aﬂ(mldf +0.5(bod? — boda3 + b1d?) + byda? + 2da3 — bsda? + bad3 +
d%) +m; +mg
Subject to the constraints :

G1(X) =0.5b1—$1+(0.5bo+61)§0 Go(X)=Dy - D1 <0
G3(X) =29216(1 + z1/22) —C1 <0 Gy X)=dy—d1 <0
Gs(X) = 29216(z, /z9) — Co < 0 Gs(X) =ds —dy <0
G7(X) = (615.51z1 +3930)1/3 —d; <0  Ge(X)=D; - Dy <0

Go(X) =0.5b; +0.5b —z9 +es+b3<0 Gip(X)=z24+21—177<0

Data: {bo, b3, €1, e4, €2, Dar, L, bs, do, p}

From the different selection, crossover and mutation operators, described
in the previous chapter, we have created 18 sets of tests in order to com-
pare all these operators on our three problems. Each continuous variable is
represented with a 20 bits length string. The population contains 200 indi-
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viduals. To obtain statistically significant data, one hundred independent
runs have been performed for each combination of operators.

3.1. RESULTS

The average error between the theoretical optimal solution and the solution
given by GAs is always smaller than 1.4% and the error for the best run is
always smaller than 0.01%. Finally, for the 3 design problems for which we
know solution, we have obtained results of good reliability.

From the tests made on our three design problems, we can draw the
following remarks about the genetic operators. The classical selection gives
the worth results because it causes a premature convergence for the three
problems. With the two rank-based selection methods, we obtain good re-
sults because we avoid the domination of the best individual. In fact, by
using the classical selection method, we can have an individual in the popu-
lation, which is much better than the average fitness of the population. Such
individual has a large number of offspring and prevents other individuals
from contributing to the next generations. That causes a rapid convergence
to a local optimum. The difference between our two rank-based methods is
the selective pressure. As the first method has a bigger selective pressure,
it has a better convergence velocity.

For the crossover methods, the traditional one-point crossover performs
worse than the two-point crossover. With the two-point crossover, we have
higher convergence velocity and higher convergence reliability. The reason
is that one-point crossover has a very high probability of separating bits
that are located at the extremes of the chromosome. On the figure 3, we
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Figure 3. Comparisun between 1 point crossover and 2 point crossover (prob3)

compare for the prob3 these two crossovers, by showing for each method
the evolution of the objective function corresponding to the best execution,
and the average of the executions. Some recent empirical studies [10] have
shown that crossover operator having higher number of crossover points
may be more effective at times but uniform crossover does not always give
for our design problems the best results. Results depend on the problem
treated. We prefer not to keep this method. However, the actual standard
used in implementations is a two-points crossover but according to Bick
[2], no generally recipe for the choice of a recombination operator can be
given.

Figure 4. Histogram for prob2 Figure 5. Diversity of the population

Concerning the mutation, uniform mutation performs better than clas-
sical mutation for the 3 problems (see histogram on fig.4 for prob2 for which
the known optimal value is 3.88). We have a clearly better reliability with
the uniform mutation and more runs converge. By analysing our graph-
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ics and watching the population evolution, we have noticed that with the
classical mutation, the population converges too rapidly around a single
point, this being the cause of the premature convergence. With more mu-
tations (uniform mutation), we have more diversity in the population and
this can prevent premature convergence. We had chosen a mutation rate p,,
of 0.02, p, = 1/1 (I: chromosomes length) being, according to Miilhenbein
[1] the optimal mutation rate. Figure 5 presents the evolution of the ob-
jective function for the best individual, the worst individual and average
of the population, showing the population diversity in the course of the
generations, for the best run of prob2 with classical (¢) and uniform (u)
mutation.

3.2. DISCUSSION ABOUT THE REPRESENTATION

During the analysis of the histograms, we had noticed that many runs
identify exactly the same local optimum. This phenomenon is represented
by peaks on the histograms (fig.5). It seems to be interesting to analyse the
chromosomes strings, which correspond to this local optima, in order to find
the cause of these repeated premature convergence. We also compare the
theoretical optimal binary string with the string corresponding to each local
optima. This comparison shows that for all the problems, there is an error in
the string associated to one of the continuous variable of the local optimum.
The theoretical string, corresponding to each theoretical variable, generally
contains an alternation of many 0 and 1. But the string, corresponding to
each local optimum, contains a succession of 0. The values of these decoded
strings are generally not very different but in the coding space, they are
very far. If the algorithm converges too rapidly, the individuals are almost
identical and it becomes very difficult to obtain the theoretical string. This
explains that we have better results when we have more mutation, more
diversity in the population. This study shows that the standard binary
coding is not suitable for continuous variables. The major drawback of
standard binary coding is that the Hamming distance between consecutive
numbers is usually greater than 1. In the worst case, with a 20 bits string,
all 20 bits have to be changed simultaneously. Other practical experiences
have noted that the binary encoding has some disadvantages [1].

In order to enhance performances, we solve again our design problems,
by using the binary Gray coding instead of the standard coding. The advan-
tage of the Gray coding is that consecutive numbers have always Hamming
distance of 1, then we obtain results with a better reliability. For exam-
ple, the average error between theoretical solution and the calculated one
decrease from 0.58% to 0.0003% for prob2.
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4. conclusions

GAs are very interesting basic methods for solving complex problems of
optimal design. For our three design problems, we obtain results with a
good reliability. One of the principal advantage of this algorithm is that it
does not require derivative information. Moreover it can provide number
of potential solutions, which can let a choice to the user. GAs have the
disadvantage of having a high computational cost. When gradient-based
algorithms are not applicable, GAs are powerful stochastic method but
when deterministic methods are applicable, we do not advise GAs. The
schema theorem advises a standard binary representation but our study
has shown that this representation is not suitable for continuous variables.
Moreover, the mutation operator was presented as a background operator
of small importance. On the contrary, we have found that this operator, by
introducing diversity, improves convergence greatly. By using a binary Gray
coding, we have obtained better results than with a standard binary coding.
A binary representation does not seem the best method for the continuous
variables. This mechanism implies that in continuous space of the original
problem, only a search on grid points is performed. The reliability will
always be limited by the increment value. Our next research will then be
on the use of a real valued vectors for the continuous variables, with genetic
algorithms or other evolutionary methods.
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DESIGN OF MATERIALS WITH SPECIFIC ELASTIC PROPERTIES USING
SHAPE OPTIMIZATION METHOD"'

SHUTIAN LIU, YUANXIAN GU AND GENGDONG CHENG
State Key Laboratory of Structural Analysis of Industrial Equipment
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Abstract

In this paper, we use a shape optimization method to determine the microstructure
shape of composite materials composed of two phases (a material phase and a void
phase) in order to design composite materials with specific elastic properties, such as
with zero Poisson’s ratio. Microstructure topology is limited to honey-combed skeleton
structure in a unit cell as this is most easily manufactured. The micostructural
parameter is the angles between two sides, the length of sides and the thickness of
skeletons. The optimal goal is to minimize the differences between the components of
effective elastic tensor and the desired (given) value of these components. The effective
behavior of composite materials is found by use of a finite element based numerical
homogenization procedure. As an example, the design of materials with zero Poisson’s
ratio shows the procedure.

Key words: material design, optimization, homogenization.

1. Introduction

Development of high technology leads to a number of special structures. These
structures often need to meet the special requirement for structural performance. For
example, the different regions or different surfaces of the structure may need different
physical properties. In some cases, the materials may need to have specific properties,
such as with zero thermal expansion coefficients, or with negative or zero Poisson’s
ratio. The traditional way to improve the performance of a structure is to optimize its
size, geometry, and/or topology with the assumption that the structure is made of the
given materials. Composites have the potential to be easily designed. By changing their
composition, the fiber orientation or the microstructure topology and shape, they can
exhibit different mechanical properties [2, 5]. Optimization of material selection and
material composition provides a new era for structural engineers.

From the mechanical point of view, the aim of design of materials is to determine

" The project was supported by the National Natural Science Foundation of China (19602007)
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the topology and shape of microstructure composed of material and void phases in a
unit cell to realize a technical requirement. This aim is analogous to that of topology
and shape optimization for continuous medium. This observation bridges the gap
between material design and optimal shape and topology design and initialize a novel
method for material design, i.e., shape optimization method.

In this paper, we use a shape optimization method to determine the microstructure
shape of composite materials composed of two phases (a material phase and a void
phase) in order to design composites with specific elastic properties, such as with zero
Poisson’s ratio. Microstructure topology is limited to honey-combed skeleton structure
in a unit cell as this is most easily manufacturable. The micostructural parameters
include the angles between two sides, the length of sides and the thickness of skeletons.
The optimal goal is to minimize the differences between the components of effective
elastic tensor and the components of specific (given) elastic tensor. The optimization
problem is solved using programming techniques, such as Sequential Linear/Square
Programming Method, Golden Division Search Method.

The shape optimization procedure proposed here, essentially follows the steps of
conventional shape optimization procedures. The design problem is initialized by
defining a design microstructural topology (a honey-combed skeleton structure)
discretized by a number of finite elements. The optimization procedure then consists in
solving a sequential finite element problem followed by changes in shape representative
parameters.

At each step of the shape design optimization procedure, we have to determine the
effective elastic properties of the composites. Because of the homogenization method is
mathematically rigorous and effective in predicting the elastic properties of composites,
we use a finite element based numerical homogenization procedure to determine the
effective elastic properties.

2, Shape Optimization Procedure

Composite properties are dependent on the microstructure of materials, which is
depicted with a unit cell. The parameters for representing the microstructure should
include the shape parameters of unit cell and the parameters used to describe the
distribution of materials in the unit cell. The goal of material design optimization is to
find these parameters to make the materials with desired properties. In this work, a
shape optimization procedure is used to determine the distribution parameters on the
bases of a given topology of a unit cell. By selecting parameters, the effect of the shape
of a unit cell on the overall properties is also considered.

2.1. OBJECTIVE FUNCTION

The objective function f (E,-]}-,Id) can be any combination of the elastic properties E;d :

The concerned example in this paper will be the case where we want to design a
material microstructure with specific Poisson’s ratio in some one direction. In this case,
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the objective function f will be the square of the difference between the value of
Poisson’s ratio, vi., and the given value, f =(v{} —v;)?, where, v}, is the desired
poison’s ratio of the materials.

Jo=9
f@ ot

Figure 1. Periodic structure of materials and a unit cell

2.2. DESIGN VARIABLES

Consider a two-phase material which is combined by a material phase and a void phase.
If the topology of solid material phase is given, e.g. a honey-combed skeleton structure,
the parameter of the shape of unit cell and the parameters which depict the shape of the
solid structure in unit cell domain will be the design variables. The unit cell shape
parameters will be chosen as the length scales of the rectangular domain of the unit cell.
The shape parameters of the material phase may be the characteristic point’s
coordinates. For a honey-combed skeleton structure shown in Figure 1, these
parameters may be the  thickness and length of the  bars,

X=(t,0. 05,0 ,5,8,,8;,A )T. In the case where the skeleton structure is an equal

side length polygon, the thickness ¢ and the angle & determine the shape of the solid
structure and the shape of the unit cell.

2.3. CONSTRAINTS

For the purpose of design materials either with orthotropic, square symmetric or with
isotropic parameters, such constrains must to be implemented in the optimization
problem. These constrains are equality ones and are difficult to implement in an
optimization problem because of the starting guess may be infeasible. One approach to
overcome this difficulty is to choose constrains as a penalty function added to the cost
function, such as taken by Sigmund in [5]. In this paper, two symmetric lines are
specified to obtain orthotropic properties, although only one symmetric line is needed to
obtain this nature {5].
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Another type constrains are the boundary limits on design variables. The
thickness is required great than zero and the variation of the angle is limited to the
region of 0 Degree to 90 Degree.

2.4. FINAL OPTIMIZATION PROBLEM

An optimization problem including the above mentioned features can now be written as
Ngnf(x) = (Vg - V102 )X =(81,8,0 .8, 0,1, ,1,)
518, 25,8 <5, ‘ )
t2tt <L(E=12,A n)

where s; and ¢; represent the length and thickness of the polygon sides respectively.
For equal side polygon problem, the optimization problem becomes

Min/(x) = (vi; = vip).x = (1,0)

stt=>0
a <90°
-a<0°

2

This optimization problem will be solved using Golden-division method for a
series of thickness parameters 7. The iteration procedure will end when the change in

the angle or the objective function from step to step is lower enough, for example less
than 10,

3. Homogenization Method

Assuming two-dimensional linear elasticity, the overall elastic behavior of a porous
materials can be described by the constitutive relations expressed as:

oy = Eigcl € 3)

Where over bar denotes the volume average. The effective elastic properties E;,Id of

porous materials are computed using a numerical homogenization method as described
in the following. The effective Poisson’s ratio is

H H
H _ E1122 H _ E1122

127 ,~H ° 21 7 ~H
Ellll E2222

“4)

In the followings, the important equations of the homogenization theory are
summarized. The detail of this theory may be found in the literatures [1, 3, 4].
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The effective elastic properties is determined by the equation

kl

1 oY
Eyu =Ty [ By = Ey, 5% )

Where the displacement fields W/™*(y) are the periodic solutions of the following cell
problem

5{]7’[” a}
IY (B — Eu ~5'{—)5/461')/ =0, Vv eV, ={vivisY-periodic} (6)
! J

The above problem is usually solved by finite element method. The base cell is
discretized by finite elements and solving equition (6) means solving a finite element
problem with periodic boundary conditions for three different prestrain problem.

4. Examples

Let’s consider an Aluminium with uniformly distributed pores. The solid structure of
Aluminium is a 6-sides polygon skeleton type one. The periodic microstructure and the
unit cell are shown in Fig.1. The Yang’s modulus and Poisson’s ratio are 6.958x10*
Mpa and 0.3148, respectively.

TABLE 1. microstructure parameter and properties of materials with zero Poisson’s
ratio for various thickness.

t « /Degree Fraction E, /Mpa E./Mpa Gy2/ Mpa
10 -0.3038 0.1458 7087.03 103.81 413
20 -0.9977 0.2848 14462.00 645.08 275.96
30 -2.4270 0.2848 22456.00 1905.70 934.38
40 -5.1850 0.5696 31842.00 3955.00 2306.10

For a series of variable thickness values, the angles which make the materials exist
zero effective Poisson’s ratio are determined. When t = 20, the microstructure of
materials with zero Poisson’s ratio is expressed in Figure 2. In this case, the angle is
0.9977 degree. The other parameters of properties of materials are listed in Table 1.
Figure 3 shows the variation of Poisson’s ration with angle degrees. For different
thicknesses, the angle may be different, but this difference is small, see Table 1.

5. Conclusion

From a skeleton type microstructure of compostes with a material phase and a void
phase, designing the shape of the structure of the material phase can make the materials
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have a specific overall behavior, zero Poisson.s ratio. The example shows that the shape
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Figure 2. The periodic structure(a) and unit cell(b) of matereials with zero Poisson’s ration
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Figure 3. Variation of Poisson’s ration with angle
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ABSTRACT: In this paper a general methodology to perform shape op-
timization of geometrically non-linear shells of revolution including auto-
matic mesh generation, error estimation technique and adaptivity, is pro-
posed. The optimization process is carried out by coupling non-linear FE
analysis, B-Spline shape parametrization, sensitivity analysis, mathemat-
ical programming and automatic adaptive mesh refinement. An efficient
sensitivity analysis is used to determine the gradients of the objective func-
tion and constraints. An example of shell optimization is considered to
illustrate the application of the proposed approach

1. Introduction

Shape optimization process for geometrically non-linear shells of revolu-
tion involve several computational aspects [1-3]. The first is the structural
response analysis, which consist of solving the governing equilibrium equa-
tions for a given geometry using efficient finite element formulations such
as those presented in [4,5]. The second is the shape parametrization and
the selection of a relevant number of design variables. This is a crucial
step since different curve parametrizations [7] have a great influence upon
the quality of the design results and can sometimes lead to optimal shapes
which are not practicable from the engineering point of view. The third
phase is the discretization error estimator, adaptivity and the automatic
mesh generation. Without it, one cannot assure the accuracy of the struc-
tural analysis as the shape changes during the optimization cycles. The
last phase includes the design sensitivity analysis and the non-linear con-
strained optimization package based on the sequential quadratic program-
ming method [8]. The values of the objective function, constraints and their
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gradients provide a new geometry. In this paper we will present an efficient
approach to shape optimization of axisymmetrical shells undergoing large
displacements and rotations.

2. Shape optimization problem

Here we adopt the approach of shape optimization based on design element
technique, in order to minimize the number of design variables [6,7]. The
problem is to find the shape of each design element. The structure is
subjected to a given set of external loads, while minimizing an objective
function which is an integral of the Von Mises stress criterion.

l 1 p
Je "Ze:t/ <ovm)2pdve _ 'it/ (af + 0% — 0509 + 3a§z> e (1)
e=1"7¢

2
e=1 ve Oe Oe

Where v¢ is the finite element volume, o, is the elastic limit of the
material and p is a exponent which takes values 0, 1, 2, ... . When p =
0 we minimize the weight of the structure and when p becomes greater
then 2 we try to minimize the maximum of Von Mises criterion. The
shape optimization problem of the axisymmetrical shell structure is stated
mathematically as:

min J(v), vER"
subject to g;(v) <0 j=1m (2)
v Sv; <V t=1n

where J(¥) is the objective function, ¥’ is the design variable vector,
g;(¥) are equality and inequality constraints. v;; and v;, are the lower and
upper bounds of the ith component of . The optimization algorithm we
have used is coded in an SQP subroutine available from the IMSL/MATH
library (Powell 1978) [8].

3. Shape parametrization

In our approach cubic B-Splines are used to represent the shape of the
structure. They allow a C? continuity which is well sufficient for our ap-
plications. The geometry of the structure is divided into a few subregions,
named "design elements”, each one is described by two end control points.
Connected together they give a good approximation of the geometry of
the structure. Each design element consists of several finite elements, with
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geometrical, material properties, supported loads and boundary conditions
extracted directly from those of the design element they belong to. Thus,
with this definition our structural parametrization presents a quite general
form. The shape design parameters are some or all control points coor-
dinates. The optimization constraints such as displacements or stresses
limitations can also be imposed at these control points.

4. Axisymmetric non-linear F.E. formulation

For our non-linear analysis we consider a Total Lagrangian Formulation
(TLF) valid for large displacements, large rotations and small elastic strains.
A simple Reissner-Mindlin conical shell element with two nodes and three
degrees of freedom per node U, V, and (3 is developed. The displacement
gradient tensor [F] defined such that dZ; = [F] dZ) can be expressed as [4]:

1+ups+2zcosB P, 0 sinf
[F] = 0 1+ %(uqcosgo —wgsing) 0 (3)
wp s — 2 sinf B, 0 cosf

For small strains we can consider the following approximate expressions
for the G-L strains:

Ey=es+2xs, Egp=eg+zx9, 2Es;;=1s (4)
with
( 63 —_— up,s + %(ug’a + wg,s)
2
ey = -[,{— + 2—Ur1z
] xo =L+ tps) cosB — wp,e sinfl] B 6)

xo = 1[sinB cosp+ (1 — cosP) sing] (1 + %)
vs = (1+ups) sinf + wp s cosP

\

For small strains, but large displacements and large rotations a linear ma-
terial behaviour law can be considered between the second Piola Kirchhoff
(PK2) stresses and the Green-Lagrange strains. After integration through
the shell thickness we can obtain:

V=] {E} (6)
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where < N > = < Ny, Ny My, My T, >and < F > = <
es €9 Xs Xo s >. By considering a single Gauss point for integration,
the internal force vector can be defined in the global coordinate system as:

{Fine} = 22rL [T]" [B]" {N} (7)

Then the problem is to solve the system of nonlinear equations:

{R} = {Fint} — {Fext} = {0} (8)

5. Mesh generation and adaptive refinement

At each iteration of the optimization process, a new design model is created.
Then a uniform mesh inside each design element is generated. After im-
posing the applied loads and the boundary conditions, a first and complete
non-linear finite element analysis is carried out. According to the results
obtained, the discretization error estimator provides indications on how
and where the mesh has to be modified. Following this instruction, a pro-
cedure updates the mesh. Once again the applied loads and the boundary
conditions are imposed on the new mesh. Instead of carrying a complete
non-linear finite element analysis, the last finite element solution is trans-
fered on the new mesh and taken as an initial solution to the new mesh.
The procedure is repeated until the percentage error on the finite element
results is less or equal to a fixed value defined by the user.

For each element, the strains are evaluated at the middle of the element
and provide discontinuous distribution. The errors can be defined as:

eg =E —E (9)

where E are the exact values for strains, Ej, are those obtained by the fi-
nite element model. The unknown exact values are replaced by ”smoothed”
ones and denoted by E :

E(s) = Ni(s) Enp (10)

where Ejyy, is the value obtained at Gauss point, in the element k, Ni(s)
is a quadratic shape function in the element k. So the smoothed values
obtained using equation (10) can be substituted effectively to the exact
solution to estimate the error i.e:

ég = F — E; (11)



113

The strain energy norm, expressed in terms of the generalized strains
can be written as:

L
E n2=22w/0 <ep>[H/{en}rds=Y &>  (12)
k k

The elementary contribution || é || is integrated numerically by using
two Gauss points. The global relative error which represent the percentage
error is defined by:

el
n= o (13)
I Wl

) a2 A - a2
with | W || = Sg2r [ < B> [H]{E} rds = X | Wi |
For the refinement procedure, we define the acceptable elementary error

as:
. 9\ 1/2
_ _{I1w
p=n(——” “) (14)
n

where n is the number of elements and 7 is the percentage error requested
by the user. It is possible to evaluate coefficients which define the size
change of the elements by &, = Ue_gﬂ, Thus the new size [ of the element &

is given by [, = Cy, Iy (Ek)_l/ P where [}, is the actual size, C}, is a correction
coefficient and p is the element convergence rate. For the present two nodes
shell element we consider C; =1 and p = 1.

6. Sensitivity analysis

Let the objective function be represented as :

F = F(@,U) (15)
The problem of design sensitivity analysis is to calculate the total deriva-
tive of F at (¥, U) as:
dF oF OoF ou
— = — —_— —_— 1 == 1
dv; Ov; < ou > {Bvi} p=hn (16)
The differentiation of equation (8) with respect to a design variable, leads
to:

Kl (g} =g i=Ln (a7)
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where [K7] is the tangent stiffness matrix and {R} the residual vector.
By introducing an adjoint variable vector {P} solution of [K7]T {P} =
—-{g{,—}, then equation (16) and equation (17) give :

dF _ OF

dv; B

The total derivatives of all constraints, can be calculated in the same

manner, by replacing F with g; where g; is the jth constraint function. For

any choice of the objective function the terms {ngfa} and {%%}t} will be
unchanged because they do not depend on the objective function.

+ <P>{~g§} i=1,n. (18)
K3

7. Numerical application

The structure to be optimized is (in its initial geometry) a simply supported
circular plate subjected to a circonferential load at the edge. The mechan-
ical properties used are: £ = 1.2FE6, v = 0.3 and the total circonferential
load is P = —1.0E6.

The shape is described by six definition points (five design elements)
which are the control knots of B-Spline curves. The chosen design vari-
ables are the coordinates z;, 29, 23, 24, 25 and zg of definition points (Figure
1.). The shape optimization problem consists in finding the best shape of
the middle shell surface which minimizes the Von-Mises stress, with the
geometrical constraints allowing variations of the design variables inside
the interval [—1,+1], and an equality constraint on the displacement of
the center of the plate W, = +2 ¢m. The objective function is given by
equation (1), with p = 2.

definition point P

maxi value for
+ ) .
[-~"r-design variables

__________________________________________________________________________________

mini value for
design variables

Figure 1. Shape optimization design model

For numerical study of the optimization problem we use the geometrical
parameters given in Figure 1 which represent the design model. We note
that for 3% discretization error 29 elements are needed. Figure 2 shows
the geometrically non-linear behaviour of both, the initial flat plate and
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the optimum shell. The displacement at the center of the flat plate is
w = 1.32 em for P = —1.E + 06.

le+06 T T T T T T T T T

8et+5

6et+S |- flat plate —— .
optimum shell =—

Load P

4e+5St .

2e+5

0 1 1 1 1 1 1 1 L 1
0 02 04 06 08 1 12 14 16 18 2
Displacement W1

Figure 2. Load displacement curves at the center of the structure

The optimization algorithm converges after 19 iterations. The optimized
shell structure leads to a reduction of 43.76% of the objective function. The
number of elements for the optimal structure is about 42 for a discretization
error fixed at 3%. Figure 3 represents the FE model of the optimal shell
structure and its deformed configuration. The displacement at the center
of the shell is about W1 = +1.973 ¢m and very close to +2 em (Figure 3).

8. Conclusion

A general methodology to optimize the shape of shells of revolution tak-
ing into account the large displacements, large rotations and small elastic
strains. Our formulation includes a general shape parametrization to ap-
proximate the geometry, a discretization error estimation and mesh adap-
tivity for an automatic control of the accuracy of the F.E. results during
the optimization process preventing mesh distorsions. An explicit method
is used to evaluate the sensitivities to reduce the CPU time by a large
amount.
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Figure 8. Meshes on theoptimum shell
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TOPOLOGICAL OPTIMIZATION OF SHELLS
WITH NON UNIFORM THICKNESSES
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This work concerns the automatic design of minimum weight spare parts, under geomet-
rical and frequencies constraints. We propose a method of rapid topological optimization
which has successfully solved industrial situations involving about 3,000 unknowns. In
the considered approach, the topology of the structure is characterized by an unknown
thickness distribution and the frequency constraint is treated by a dual method.

1. Introduction

One of the main design problem for the car industry is to rapidly find the morphology
of the lightest elastic homogeneous spare part required for a specific task. Geometrical
constraints exist as a result of space limitations and casting production processes and vi-
bration analysis introduces lower bounds on eigenfrequencies of a particular mode shape.

This kind of problem has often been treated by describing the morphology as a para-
metric model in CAD systems (shape optimization). However, these approaches implici-
tly introduce preliminary assumptions on the topology of the spare part: the number of
holes and connectivity are imposed.

Other approaches that permit varying topologies have been proposed: for instance the
spare part may be characterized by a density of matter and the holes correspond to regions
where the density is equal to zero. This approach leads to numerical and mathematical
difficulties that are only partially solved by homogenization methods (see for example
[1]). Moreover the first design steps need to be completed in a short time, whereas ho-
mogenization leads to computationally expensive methods.

An efficient approach is proposed here to optimize the topology of shell structures
(given the constraint of the design space available). The topology is characterized by a
mean surface and a thickness distribution p (holes correspond to regions where p is equal
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Figure 1. a) Problem description, and b) a view of the thickness near a hole.

to zero) [2]. The combination of this surface assumption, and advanced analysis and
optimization strategies offer an efficient pre-design tool.

In this work, we assume that the mean surface is determined or imposed, thus only
the thickness map has to be determined. After introduction of the mathematical model, a
solving technique is proposed for the optimization problem. The optimization process is
based on solving the Lagrangian stability equations with a particular linearization of the
vibration constraint. This approach is suggested by physical considerations, which show
that the mechanically consistent solutions must satisfy such stability conditions. Finally,
an application to a car distribution hood is presented.

2. Shell Model

The spare parts are considered as shells (Fig. 1a). Shells are defined by a mean surface
S C R?3, assumed regular and bounded. Its boundary is denoted 85 and is decomposed
into two parts I'y and I'y: 5 = T'; UT,. S is described by curvilinear coordinates
a=(a,az) € QC R?

S=z(Q) ={z=(z1,2223) € R®|z=2(a), a € Q} (1)
The intrinsic basis on S is generated by e; = gail ,eq = 5972 and eg = lfi%g—l The

region () occupied by the spare part is defined by a thickness distribution p : & — R:

Q:{x+r63€R3|xES’,—@<r<B(Qﬁ} 2)
Thus, the parameter p defines the topology of the spare part: the holes are the regions
where p = 0. The lateral boundary of @) is denoted by 0Qia: = {z+res € Q |z € IS}.
In the sequel, we consider, fori = 1, 2,

0Qi ={rx+reseQ|ez € I;} 3

We can split Q) in two sub-regions Qo =4z.€ Q |p=0}and Q+ = {xr € Q | p > 0}:
@+ U Qo = Q. The holes correspond to ¢)y and the spare part to Q. In addition, we
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shall also consider Q(a+) = {z € Q | p > «a} in which « is an inferior bound on p
(Fig. 1b). In this case Q4+ = @Q(a+). The geometrical constraint is implicitly treated
by providing .S and the maximal thickness H > 0 (the results can be extended to the
situation where H : 2 — R is a function). The region of S corresponding to the holes
is Sop = {z € S| p(z) = 0} and the region of S corresponding to the spare part is
Sy = {z € S|p(z) > 0}. Thus, the determination of the topology is equivalent to the
determination of Sy or its complementary S, : these two sets are entirely characterized
by the thickness distribution p. In the following, we consider the determination of the
thickness distribution problem.

The material constituting part @ is assumed to be elastic and homogeneous. The
stationarity of the discrete energy functional for such a linear undamped structure leads
to the discrete time invariant linear equation for free vibrating structures written in the
frequency domain: (K — w?M )®; = 0 where K and M are the discrete global rigidity
and mass matrices and w; and ®; are the j-th pulsation and j-th eigenmode.

3. Optimization Problem
The standard discretized formulation is given by:
min(f(h) = Y _aihi)  i=1,..,n
i 0 @)
i < Pmas

g:w?—w-

?>
h; =0 for pmin <h
The cost function f represents the mass of the spare part. The first constraint is an im-
posed mode j with a pulsation w; higher than a threshold pulsation . The second one
introduces geometrical limitations: pp,;n is a threshold of matter below which a hole is
assumed and py,q. is @ maximum value of the thickness. Surface S is defined by the
mesh for the space available to design. The optimization parameter is the thickness distri-
bution p of the shell discretized by the element thickness % in n elements. Thus, the same
discretization is used for the mesh of the mean surface and for the discretized thickness
distribution. This is an interesting feature since the mesh can be easily refined in order
to approximate conveniently the thickness distribution. That ensures consistency for the
approximations used for both the finite element model and thickness distribution. More-
over, such a discretization is sufficient because in the first design steps, we only need a
rough idea of the overall shape.

Difficult mathematical questions concerning this problem are still with us, such as
the existence of solutions and Lagrange multipliers which are closely connected to the
topological properties of the set of admissible configurations (for example, its closure or
the existence of an interior). These questions will not be evoked here since this work
is mainly concerned with the numerical aspects of the problem. We point out that a
particular treatment has to be considered when multiple eigenvalues are involved: this
point will be not developed in the sequel, due to length limitation.
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3.1. RESIZING RULE

Due to the non-linear nature of the eigenvalue constraint, problem (4) requires sequences
of solutions of more simple approximate problems. Currently, calculating second sensi-
tivity derivatives of eigenvalue constraints with respect to n design variables is still too
expensive in terms of computational cost and storage. Thus, sequential quadratic pro-
gramming methods are not practical for large problems and it has been advised to use
a sequence of linearized sub-problems [3]. In addition, shell behaviour in vibration is
known to be governed by inertial effects (themselves being thickness dependent). This
mechanical knowledge is taken into account by sub-problems obtained from a Taylor se-
ries expansion about A7 (for 77 = 2 linearization is obtained about reciprocal variables
of h)

min (f = Zaihi) i=1,n

1—
9 = 9(hoi) + 22| hoiso I:(h_f:,:) n 1] (ﬂ,_) agagilz?,) >0 forn#£1 (5

1-n
Pmin < hu; <h; <hg < Pmaxzx orh; = 0for h; < Pmin

The last set of equations introduces additional constraints (move limits) with h;; and hy;
used to reduce the domain of variation of the variables. These bounds must be chosen to
guarantee a good approximation of the problem within the move limits.

Because there exists only one constraint (except side constraints) it is recommended
to treat the dual problem of (5). The h-stationarity of the Lagrange functional associated
to the dual sub-problems leads directly to the iterative scheme (denote by superscript k)
for the thickness variable

. 8g/0h \ /" .
hf'“ = PTOJ{hy; hui] I:hf (a+(1—a)~ ()\- 6%%») )] t=1,..,n (6)
i/

with a relaxation factor 0 < o < 1. The Lagrange multiplier A is obtained by assuming
that it corresponds to an extremum of L:

— 0
l1—n

—1 i=n
— _ 99 .k k09 (0F/Ohi\ "
= ((" AP ahi’“’) %EZ,”" Oh; (ag/ahz- ”

1€1,

with [, the set of variables within h;; and h,;. Numerical efficiency is due to the fact that
no matrix inversion is required in this scheme.

3.2. RESTORATION MOVE

One difficulty caused by the nonlinearity of the constraint is that this search moves away
from the constraint boundary (search is done in the tangent subspace that no longer fol-
lows exactly the constraint boundary). So, a restoration move is performed to bring h
back to the constraint boundaries. In this case, a small correction Ah = h*t! — h* in the
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perpendicular subspace must be found so that constraint g is exactly satisfied. The form
of this new sub-problem is:

. 1 T -
{ minas (5 AR Ah) Ah=—N (NTN) Lo 8)

g=20

with a first-order approximation of ¢ = NTAh + C. Such an approximation was sug-
gested in [4] for one variable design. It is based on the integration of the differential
equation of g
T (0K 20M
ag Y (a—h,-_wja_h,) @;

= &)
ah; T M,

By considering that the gradients §T° finite element matrices are constant, one obtains:

2 {de}T{dKi} T Oe
Wi — AT DD
N= (M), C=n| S | v de= et
@ = K, ) T{dM;) J J

10)

First, this correction must be applied before optimization until ¢ is small enough be-
cause, for practical applications, the first design of shell structures (given without stiffen-
ers) is generally non-admissible. Next, during the optimization iterations, the restoration
move is combined with improvement step (6) to give:

. ag/0R\ /" -1
k+1 _ k. _ . . _ T
REHY = projis,, aui [h <a+(1 a) (A 6f/3h)k N(NT'N) ' C
€3]

3.3. MODE TRACKING STRATEGY

The spare part is modified during optimization, so the eigenvalues can change from itera-
tion k to iteration k + 1. If the frequency constraint concerns the eigenvalue associated to
a given normal mode, special attention must be given to the possible modification of the
ordering of this mode: frequencies can be modified in such a way that mode ®; (corre-
sponding to the i-th eigenvalue) at iteration k£ becomes ®; at step k 4 1. In this case, the
method must be able to follow the target optimization mode, and find index j: we must
ensure that the optimization concerns the same mode at each step. It can be performed by
evaluating a Modal Assurance Criterion (MAC),

2
(2] @)

MAC = —————
€= @Te;) (@7

%100 (12)

which is expected to be maximum when the same mode is considered (®; = @;).
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Figure 2. Cpu-time comparison between disassembly method and classical assembly.

4. Model Updating

The optimization technique is efficient because no large matrix is inverted, but the finite
element analysis is still time consuming when the number of finite elements is important.
First, a constant mesh is kept during optimization for efficiency purposes. Only nodes
freed during the formation of holes need particular attention. Time and problems involved
in remeshing are eliminated. Second, a part of the cpu-time is spent in assembling finite
element matrices. Mass and stiffness matrices must be re-assembled after each correction
of the thicknesses. Third, another part of the cpu-time is spent in calculating frequencies
and modes shapes. The last part of the cpu-time is devoted to sensitivity calculation.

The disassembly technique explained below permits to save time during the assembly
and sensitivity calculations, and the preconditioned conjugate gradient algorithm saves
time during the eigenproblem. Note that these two improvements are not fast reanalysis
techniques which involve structural response error.

4.1. THE DISASSEMBLY TECHNIQUE

In fact, design parameters impact exclusively the constitutive relation. This leads to the
idea of using a representation of finite element matrices where the contribution of un-
changed data (such as nodes coordinates, connectivity, ...) is disconnected from constitu-
tive equations. Such a representation may be formulated as K (h) = QW (h)QT, using
the stiffness matrix as an example. The same decomposition may be written with the mass
matrix. In this decomposition mesh informations are stored in matrix ¢ while matrix W
is diagonal and depends on the updated design variables h. Hence, any updating of the
model only involves re-assembly of the diagonal matrix . Evaluation of () is more ex-
pensive than a classical evaluation of K (h), but needs to be done once for all. As shown
in fig. 2 for the example treated below, the disassembly technique pays off in subsequent
analyses. The same decomposition is used to efficiently compute sensitivity derivatives

of finite element matrices with respect to design variables (% =Q g;’x Qh).
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Figure 3. Optimal stiffening distribution on the hood mesh.

4.2. THE EIGENVALUE PROBLEM

For the eigenproblem, a subspace inverse iteration method is used. The main step of this
method is to solve the equation K ®**! = M ®* until ®-convergence. The conventional
implementation is to used a Cholesky factorization of K at each optimization step for
solving the eigenproblem. It is known that this Cholesky factorization is computation-
ally expensive. The use of an iterative method based on the preconditioned conjugate
gradient algorithm becomes advantageous in the context of structural optimization. The
main idea is to use the Cholesky factorization of K as a preconditionned matrix for the
first optimization step. Until large modifications in K occur, this preconditionned matrix
remains meaningful. Therefore, only one Cholesky factorization can be computed for
several optimization steps.

5. An Industrial Case

The result presented below has been obtained using a DKT18 shell element [5], which
involves a Kirchhoff model of 6 degrees of freedom (dof) per node. The method has been
implemented with MATLAB.

The optimal distribution and topology of stiffeners is determined for a car hood. The
first global mode with a frequency above 250H z is imposed. Material is polymer with
properties of E = 1000 mN/mm?, v = 0.42, and ¢ = 1.36 x 107°Kg/mm3. The
mesh has 9756 dof and 3078 design variables. Bounds on thicknesses are 1mm and
25mm. By specifying a strictly positive lower bound for the thickness, the overall shape
is found without holes.
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The initial shell has a mass of 0.106 /¢ and the frequency associated to the first mode
is 90 Hz. An admissible configuration is first determined which may not be optimal:
this leads to a part having a higher mass of 0.153K g, but which satisfies the frequency
constraint. It is used to start the optimization. The final topology gives an admissible piece
of 0.069Kg. Figure 3 shows the distribution of thicknesses on the hood mesh. Regions
in dark represent the topology of stiffeners.

Note that if a more precise optimized CAD model is sought after, a parameterized
model can be defined from the knowledge of the overall shape stiffeners, then this shape
can be optimized.

6. Conclusions

Structural topological optimization suffers from the curse of computational complexity
which prevents its application to large-size dynamic finite element models. A numerical
approach for the case of linear, undamped shells has been proposed. Emphasis has been
put throughout this work to develop computationally efficient algorithms, for example,
by using an assembly technique adapted to multiple reanalysis. The dual approach com-
bined with a parameterized resizing rule is implemented in the Matlab environment. This
procedure is illustrated successfully with a large-size structural model where about 3,000
design variables are optimized simultaneously on a workstation. Moreover, our particular
choice of design variables and optimization method enables us to deal with structural and
topological optimization within the same framework.

Developments presented here could be find in Reference [2] where the parameter 7 is
adjusted to extend the range of validity of the approximation, and an extension to multiple
frequency constraints with upper and lower bounds is given.
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Abstract

The development of methods to take into account uncertainties in structural analysis
computations and in design optimisation procedures is attracting a fast growing interest
from both the scientific and the industrial communities. Possibilistic methods in which
uncertainties are represented by fuzzy numbers appear as an alternative to the classical
probabilistic methods like the Monte-Carlo methods or the Statistical Finite Element
Method. The principal difficulty of possibilistic methods is that they lead to the
solutions of systems of equations whose coefficients are defined by intervals. The
following paper presents several approaches for the solution of such systems, some of
them original, taking the Vertex engineers’ method as reference. Extension of these
methods to inverse design problems is considered.

1. Introduction

As computational methods for structural analysis are now mature and more and more
widely recognised, a new challenge is clearly to make possible estimation of effects of
uncertainties. Uncertainties have different origins. Most of the time, they will be more
or less directly related to product manufacturing and assembly processes. From the
computational point of view, uncertainties lead to the scattering of analysis data like
geometrical dimensions, material and physical properties, applied loads and boundary
conditions and, in turn, scattering of structural responses.

When dealing with data uncertainties, several objectives are possible. The first one is
clearly to get sensitivity information and quantify how structural responses will be
influenced. Another objective is related to reliability and estimation of failure
probabilities. However, the main benefit from non-deterministic computational methods
is perhaps for design, either in helping the designer in fine tuning process parameters so
asstorachievesprescribed-level-of reliability, or to design structures as insensitive as
possible to uncertainties. The latter is usually known as robust design.
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There exist today several techniques to compute the statistical distributions of structural
responses. The best knowns are the now classical Monte-Carlo Simulations (MCS) and
the Stochastic Finite Element Method (SFEM). A third class of methods, which uses the
concept of fuzzy numbers to represent uncertainties and arithmetic of intervals for
computing structural responses, is considered in this paper. The latter differ from the
classical “probabilistic” approaches such as MCS or SFEM in the sense that, instead of
computing statistical distributions of structural responses, “distributions of possibilities”
are obtained. For that reason, they are known as “possibilistic” approaches.

The idea to represent a distributed parameter by a fuzzy number is not new. The use of
fuzzy logic to formulate a design problem can be found in literature [6], as well as the
use of fuzzy arithmetic and arithmetic of intervals [1]. A fuzzy number can be seen as
representing a distribution of possibilities, which describes the degree of membership of
an uncertain parameter on a given range. In practice, the fuzzy response of a structure is
computed in three steps. First, the fuzzy numbers describing the parameter uncertainties
are sampled for different levels of degree of membership, resulting for each of them in
the possible intervals of variation of the parameters. This is known as “fuzzification”
(figure 1) :

AKX A L(X2) A H(Xn)

T e

Figure 1 : Fuzzification

1

Second, the finite element equilibrium equations are solved for each level, leading to the
corresponding intervals of variation of the structural responses (figure 2) :

A 1(X1)

RESOLUTION
Kq=F

A K (Xn) X2 q(X1, X2, ..., Xn)

Figure 2 : Computation of the structural response
for a given level of membership
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Finally, putting together for each structural response the intervals related to the different
degrees of membership allows to re-built the fuzzy response (figure 3) :

uig) level

q(X1, X2, ..., Xn) q
Figure 3 : De-fuzzification

As far as problem-solving for a given level of membership is concerned, and that
uncertainties do not only affect the boundary conditions but also geometrical
dimensions or material and physical properties, the difficulty is clearly to solve
discretized equilibrium equations in which, first, all terms are replaced by mathematical
intervals, and second, the arithmetic of intervals takes the place of the classical
arithmetic rules. Defining an interval linear system of equations A% =b as the family of
equations : Ax=b (1)
with A € A (R™" intervals matrix) and be b (R" interval vector), the solutions set
will be defined as :

2(A,5)={xeR"/Ax=bwherc AcAandbeb } )

It can be shown that the structure of Z(AI; ) is complex. In practice, it will not be

possible to compute the exact solutions set and only bounding estimations will be
obtained, either optimistic or pessimistic. The paper will be first devoted to the review
of different possible direct algorithms to compute approximations of the set of solutions.
Original methods will be proposed. The Vertex method [3], which requires for each
level of membership 2" analyses, with n the number of uncertain parameters, will be
used as reference. Second, under the assumption of static linear analysis, application of
these methods to inverse design problems will be considered.

2. Implicit Formulation

The implicit formulation corresponds to the optimistic approximation of the solutions
set. The interval linear system of equations Ax =b is considered in the following way :

ansan] o ey an] | [xon]) ([21051]
[221,'521] [an’.az”] [12,.;2] _ [in’l;z] 3

[g,,l,am] [gnn,ann] [zn,xn] [Qn,bn]
An approximation of the solutions set is sought as the interval vector x , which allows
matching,the;uncertaintiessof thesleft-handsside of the equations to the uncertainties on
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the right hand side b . Provided that the system is compatible, i.e. uncertainties on b are

greater or equal to the uncertainties resulting from the product of A and % (in the
sense of the arithmetic of intervals), the solutions are known as optimistic as the
intervals of X components can be under-estimated.

To compute an optimistic solution, an original formulation consists in solving the
following large sparse linear mathematical programming problem :

max min (x,' —1[) Sk

Sa;x; uj Zgijgi

4y =g=i - =
<7 Zi%ij =b; Lij _alx’ “i 2a'jxi @)
X Zi”’f =bj U Sa,jﬁi u,] ajx;
Eij SE,‘j;i u,j Za,'jxi
i=1n j=1Ln i,j=1,n

where the slack variables u; are introduced to enforce the arithmetic of intervals

multiplication rule. Additionally, a perturbation strategy consisting in solving the

perturbation of the initial system around mean values is used to cope with compatibility
problem [2] :

A=A+AA, 3=F+A%, b=b+Ab (5)

AAR € Ab - AAX (6)

with respectively A, A and AA the R™ intervals matrix, the mean value and the
perturbation.

3. Explicit Formulation

The explicit formulation of the intervals linear equations system X = A7b will lead to
a pessimistic approximation of the solutions set, as computing X can be seen as an error
propagation process. An over-estimation of the interval components of X is obtained,
sometimes unbounded.

3.1. THE HANSEN ALGORITHM

One of the most important features of the arithmetic of intervals is that the zero value
cannot be contained in the interval at the denominator of a division. As a result, iterative
algorithms of the Gauss-Seidel or Jacobi family will be used as a basis to the solution of
intervals linear equations system. Iterates in the Gauss-Seidel algorithm are given by :

i1
sktl) D O (k) 2(k)
HU = b= Xyt Yy ™

il j=1 j=i+l
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where, contrary to the Gauss algorithm, the &; are known and positive if A

corresponds to the stiffness matrix. It should be pointed out that all terms in the
preceding equation are intervals. The two specific features of the Hansen algorithm are
first a mid-point inverse preconditioning of the system and second an intersection
strategy between two successive iterates to limit occurrence of unbounded solutions.

3.1.1.  Mid-point inverse pre-conditioning
Hansen’s algorithm [4] solves the preconditioned system :

Mi=? (®)
with : M=i"4, =37, A=(A+A)2 ©)

3.1.2.  Intersections
Using the Gauss-Seidel’s algorithm for the solution of the system Mi=7, one will
have at iteration k :

i-1

A(k+1) A(k+1) A(k)
— 2 + 2 R (10)
i j=I1 j=i+l
with : )Acl(k+1)=£l(k)m5)l(k+1)’5}[(k+]) rﬁ_ ; ZmUA(k+1)+ z A(k) (11)
ii j=i+l

According to a pessimistic approximation of the solutlons set, the intersection strategy
will help in minimising error accumulation and avoiding unbounded solutions. Rohn’s
algorithm [5] gives further extensions of the Hansen’s algorithm.

3.2. THE VERTEX METHOD

For all the problems considered in the experimental phase, and when possible, the
Vertex method was used as reference. The Vertex method consists in successively
exploring the 2" combinations of the extreme values of the design variables and taking
the corresponding extreme values of the structural response. It should also be pointed
out that the Vertex method implicitly assumes that the xs are monotonic functions of the
design variables.

4. A Simple 2D Example
A simple example taken from Hansen’s works will help fix ideas. Considering the
system :
[2:3] [0]][x1] [ [0:120]
{[1;2] [2;3]}{)62} ) {[60;240]}
Tables 1 and 2 give values of the unknowns x and the recomputed right hand side for

four direct methods, Vertex method, Hansen’s algorithm, classical Gauss-Seidel’s
algorithm and finally implicit formulation (respectively subscript v, h, g and s).
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X X2 b[ B2
q, [-120;90] [-60;240] g, [-420;510] [-420;900]
7. | [-120,90] [-60;240] 7. | [-420;510] [-420:900]
p | [-130.2;167.7] | [-104.4;267.2] gy | [-495;770.3]1 |[-537.7;1137.1]
qs [0;22.5] [30;52.5] qs [0;120] [60;202.5]

Table 1 : Unknown intervals x Table 2 : Recomputed right hand sides

Figure 4 represents the different sets of solutions with respect to the exact set of
solutions.
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Figure 4 : Comparison of the different solutions sets

From the solution of different small to medium sized problems, it comes the following

conclusions :

- Perturbation and pre-conditioning enlarge the approximations of the solutions set.

- The implicit method enforces the left-hand side of the system of equations to the
(perturbed) right hand side, what is not the case in the explicit approaches where the
recomputed right hand sides are larger than the prescribed ones.

- The perturbation strategy is essential to ensure feasibility in the optimistic
formulation.

- The preconditioning strategy is essential to ensure robustness in the pessimistic
algorithms.

- The Vertex solution always appears to be the reference solution.

- Hansen’s algorithm and its Rohn’s variant provide solutions sets greater or equal to
those provided by the Vertex method, with a quite good robustness.

Finally, emphasise will be place on the fact that prior to the solution of intervals
equations systems, extreme values of systems coefficients have to be computed.
5. Vertex Solution Using Neumann Series Expansion

As the Vertex method remains the more robust approach, and as it leads most of the
time to the best approximation to the solutions set, a way was searched to improve its
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efficiency. In this section, the solution of the Vertex problem is built using Neumann
series expansion. Assuming a linear static analysis problem, and that uncertainties affect
the stiffness matrix K only, one can write :

~ — ~ L
K=[I£;K]=K+Z/.tiAKi (12)
i=1
so that one will have successively :

-] r

n o n

5a = & 51

Kq=g,q=[K+ZuiAKi] g.490=K Ig,q=2(—2#i1< AK,-] g0 (13)
i=1 r=0 i=]

n ~
or recursively : q(k”) =qy +2.UiK*1AK,'q(k) (14)
i=1

K? is the “mean” stiffness matrix. The AK;’s are the n perturbations of the stiffness

matrix, either the /" term in AK = (K — K /2 with K the lower bound of the interval for

the stiffness matrix, K the upper bound. The extreme values of the different terms of K
have to be a priori computed, or :

AK; =0K/ad,| 0O (15)

if the stiffness matrix is linear in the design variables d;. The 1;’s are scalar values equal
to (-1) or (+1) according to K or K . Considering now a design criteria ¢(q), e.g. :

c= qu (16)
the signs of the y;’s in (*) will be selected so as to minimise or maximise ¢, whether ¢ or
cis searched. Closed form solutions are most of the time possible.

6. Inverse Design Problems

Now that methods are available to compute uncertainties on structural design criteria
according to uncertainties on the design variables, an industrial frequent question is
which tolerances should be specified on the design variables so as to achieve prescribed
uncertainties on the design criteria. Let us once more consider an example to help fix
idea. In the design of a flange joint for instance, the designer will have to maintain
pressure on the leak joint between extreme values to avoid leakage. As the pressure on
the leak joint depends on design parameters, the problem will be to find for the latter,
which intervals of variation will make sure that the pressure on the leak joint is in the
prescribed interval. Such a problem can be mathematically formulated as an inverse
optimisation problem:
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max ( min &d; ) or max ( min AK; ) an
s.t.:

max(c(q))=c
min(c(q))=c

where max (c(q)), min (¢(q)) and their derivatives are computed according to section 5.
It should also be pointed out that, under the monotonic assumptions of sections 4 and 5,
the confidence on the design variables can be transferred on the design criteria.

7. Conclusions

In this paper, uncertainties in structural analysis are considered through possibilistic
formulations. Representing uncertainties on the design parameters by fuzzy numbers,
different algorithms have been presented to compute intervals of variation of design
criteria. The respective performances of the algorithms have been discussed. Putting
aside the cost criteria, it appears that the Vertex engineers’ method remains the most
robust and gives most of the time the best approximations to the solutions set. An
iterative approach has been proposed for building Vertex solutions, using Neumann
series expansion and sensitivity analysis information. Using these results and de-
fuzzification techniques, possibilistic distributions of design criteria can be built.
Another possibility is to use these informations to set through the solution of inverse
design problems specifications on design parameters.
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Abstract

Within the structural optimization framework, the so-called topology methods are well-
suited in order to find the best general layout. Their main disadvantage is that they
generally lead to structures which are difficult to manufacture because they own
composite materials, sometimes with intermediate densities. On the other hand, when
the layout is fixed, the geometry optimization methods can lead to a good-looking
optimum, but cannot change the layout.
The presented approach consists in a coupling between these two methods.

First, the optimal layout is found by means of any generic topology optimization
method; then, using simple image processing algorithms, a good-looking structure is
extracted from the topology result, and then the geometry of the latter is optimized.
Some numerical results are presented which clearly illustrate the fully automatic
process.

1. Introduction

Structural optimization can be conceived as a search for the optimal distribution of
material within an initial domain with given loading and boundary conditions. The
standard design optimization systems generally implement shape-thickness or
geometry-optimization for a fixed topology, while new emerging topology-based codes
address the optimal layout finding problem, leaving to the engineers the heavy task of
interfacing the two methods.

The interest of an automatic tool which achieves the coupling between these two
optimization methods is then obvious.

Based on this idea, a fully automatic program has been developed. In the following,
the_main_conceptual steps.are. presented,.and some illustrating numerical experiments
are given.
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2. The problem

Within the linear elasticity framework, the problem is to find an optimal design for
given boundary conditions and loading.

The equations are :

~dive = f in Q
on =t on T, (1)
u = 0 on T,

where o is the stress tensor, f a volume force, ¢ the tension and # the displacement.

We minimize an objective function, for instance the compliance :

(Q,u) = J' (F.#)dT + j (fi)dQ (2)
T, Q

'

This problem is equivalent, for a linear elastic structure, to the maximization of the
potential energy :

ﬂ(Q,u)=E]Z—aQ(u,u)—-lQ(u) (3)

where
ag(u,v) = J' o) : (v)dQ and 1o(v) = J' fidQ+ J’ 7 5dr
Q o T,

and u € V, is the solution of the state equation:
ag(u,v) =l (v) (4)

forany vinV, ={VE HI(Q),V=00nru}.

Taking into account classical constraints on the total volume, the problem is the
following :
sup Q,u)
for Q admissible u e V, solution of (5)
IQ|<V  aq(u,v)=ly(v)forany ve V,

ol LElUMN Zyl_i.lbl




3. The main steps of our approach

3.1. OVERVIEW OF THE SOFTWARE ORGANISATION

There are mainly three modules which are independent :
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topology, transition and

geometry modules. Each of them is configurable using a parameter file.

[

Pre-processing

l

Topology
parameters

Topology optimization
Optimizer
p cost

F.EM. (up)

I

Transition
parameters

Transition step

Edges detection
Smoothing (cubic splines)
Re-meshing

J

Geometry
parameters

U

Geometry optimization
Optimizer

i

F.EM. (uq)

COSt

U

[

Post-processing 1

3.2. TOPOLOGY OPTIMIZATION

3.2.1.  The goal

Visualization

(displacements,
edges, etc)

The goal of this step is, starting with an initial domain (ground structure) with given
loading and boundary conditions, to find an optimal topology (i.e. an optimal
distribution of density) according to a prescribed criteria, for instance the compliance of

the structure.

Unfortunately, this problem is known to be ill-posed because it is generally possible
to obtain a more rigid structure for the same volume of material with more smaller
holes (this leads to « chattering » designs with microscopic perforations) [CHE.81].
There are two methods to obtain a well-posed problem and achieve topology

optimization.
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The first one consists in including, in the design space, solutions with microscopic holes
(relaxation) using for example periodic perforated microstructures and then compute
their properties using the homogenization theory [BEN.94]. The advantage of this
method is to guarantee the existence of solutions for the relaxed problem [ALL.94] and
to suppress almost all the local extrema [KOH.86]. A drawback is that the generated
structure often contains perforated microstructures and hence is difficult, if not
impossible, to manufacture. An explicit penalty or some restrictions on the
microstructure (square holes in square cells) can be used to eliminate intermediate
values of the density but if they are totally suppressed we are back to the original ill-
posed design problem. The existence of a continuum solution is not assured and the
solution does not converge by grid refinement.

A more recent approach consists in excluding any structure with microscopic holes by
bounding the perimeter [JOG.94] and [HAB.96] : an additional constraint is added to
the problem in order to ensure that the perimeter, computed as the total variation of the
density (i.e. the density jump between each element of the mesh), does not exceed a
fixed value. The advantage of this method is the control of the complexity of the
optimal structure and therefore of the difficulty of its manufacturing. It also ensures the
existence of a solution {[AMB.93] -but not the uniqueness-, and we can numerically
observe the convergence with respect to the grid refinement. Moreover, this method is
not restricted to compliance optimization and can be used with any design objective and
non-linear constraints. The topology module implements this method.

3.2.2.  Mathematical formulation of the perimeter method
The optimization problem is the following :

sup T(Q, u)
for Q admissible u e V, solution of 6)
) < Vo ag,v)=lg(v)foranyve V, (
ol < P

The admissible domains, which are described by their elasticity tensor, are only
composed of void and of plain material, but in order to solve the optimization problem,
a continuous model for this tensor was considered. For instance, the model presented in
[HAB.96] where the tensor depends on the density of the material p and on the

displacement field u, was used, but any other consistent model could fit as well. The

design variable is then the density of material. To eliminate intermediate values of this
density we add a penalization function. The optimization problem is then stated as
follows :

sup 1(Q, u) +  S(p)
peV, u, € V, solution of

o<V aq (u,,v)=lg (v)foranyveV,
o)< P

(7)
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where ¥, ={pe L°(Q)/ pe H'(Q,),0< ppn < p <1Vxe Q} with Q, a partition

of Q and S(p) is the penalization function.

3.2.3. Implementation
A large scale optimization code [TIT.97] was used in order to solve the problem ( 7 ).
The main difficulty is to find an efficient optimizer to solve the large scale non linear
constrained problem within the topology phase, since every element of the mesh is
taken as design variable.

Based on triangular mesh, the linear elasticity state problems were solved by means
of a modified version of the Modulef (INRIA) finite element library.

3.3. TRANSITION BETWEEN TOPOLOGY AND GEOMETRY OPTIMIZATION

3.3.1. Edge detection

Using the optimal topology layout, i.e. the optimal distribution of density found during
the first step, the problem is to extract the edges which will be used as a starting point
for the geometry optimization. To this end, a threshold for the density is set and we
consider the equivalent picture' as binary : below this threshold there is no material,
above there is material. For the edge detection itself, it is not necessary to use a gradient
method because we have an artificial binary picture without noise [TOU 87] and
[DER.94].

3.3.2. Edge smoothing

After locating the material zone by edge detection, one obtains an oscillating boundary.
Then, a smoothing by means of cubic periodic splines is applied. Non-design parts of
the boundary can be specified by the user, which are then not modified by the
interpolating splines.

3.3.3.  Domain re-meshing

After obtaining oriented and smoothed edges which are the new boundaries of the
domain, we generate new data (new mesh, boundary conditions, loading) that are used
as pre-processing data file for the geometry optimization task.

3.4. GEOMETRY OPTIMIZATION

34.1. The goal
The goal is now to finalize the shape of the structure which has an optimal layout, using
eventually new optimization criteria (new objective functions, additional constraints).
The method used here is the classical transport method [SIM.76], [ROU.82] and
[SOK.92]. The competing domains are the images through topology-preserving
mappings of a reference one. The application of this method to the elasticity can be
found in [MAS.87]. The optimal design variable reduces to the coordinates of the spline
interpolating nodes. A general numerical implementation is described in [HABB.96].

' In fact, the edge detection is directly based on the mesh in order to preserve the
information related to the boundary conditions, the loading, etc.
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3.4.2. Mathematical formulation

The third and final problem is to minimize an objective function, not necessarily the
compliance, which is defined as classical, depending on the state of the system, which
is the solution of the equilibrium equation introduced in (4).

inf ‘]w (uw)
we Dg u,, € V, solution of (8)
a,w,v)=1[,)foreachve V,

where D, is the set of the admissible domains.

4. Numerical results

We present some numerical results for the wheel problem (see Figure 1.which
represents the initial domain with loading and boundary conditions).

The Table 1 presents the cost (compliance) at each step of the optimization process.
The Figure 2 is the result of the topology optimization with the perimeter method. The
Figure 3 is obtained from the optimal topology by edges detection. The Figure 4
illustrates the application of cubic splines interpolation to smooth the boundary and the
Figure 5 shows the final optimal geometry. The Table 2 shows that the gradient
components are already quite small at the starting of the geometry optimization, when
the topology and geometry costs are the same (compliance).

Ground Optimal Edge Smoothed Final optimal
structure topology Detection domain geometry
Value of
The 0.012 0.032 0.030 0.035 0.029
compliance

Table 1. Value of the compliance at each iteration

Master nodes Value of the gradient
1 0.0048188041
-0.0003015747
-0.0034778551
-0.0103603724
-0.0016344769
-0.0028007630
-0.0010873297
0.0007015557
0.0027923416
0.0018784474

Ol |wn]]wi

[=]

Table 2. Gradient components at the start of geometry optimization
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Figure 1. Ground structure
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Figure 2. Optimal topology

Figure 5. Optimal geometry




140

5. Conclusion

Efficient Product and Process Improvement tools naturally require as a prerequisite a
good Integrated Optimal Design approach. To this end, we considered the combination
of the topology-based methods with the geometry classical optimization. The interface
between these approaches requires simple image processing techniques.

Based on these considerations, within the framework of the two-dimensional linear
elasticity, a fully automated integrated optimizer was developed and successfully
exploited to illustrate the integrated cycle of optimum design.
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Abstract

The purpose of this paper is to describe an intelligent-object concept for the integration
of rules in objects. It is proposed to design an intelligent object as a usual object with
data and methods to which an expert object consisting of rules and reasoning
capabilities is added. The main interest is that associating rules with objects organises
knowledge in a hierarchy identical to the hierarchy of objects without any additional
artefact. Such intelligent objects control the activation of their knowledge. Therefore,
knowledge processing becomes a local and temporary process that can be activated only
when needed. Actually, the intelligent-object concept generates intelligent object-
oriented applications within which the knowledge is distributed over the objects of the
application, and knowledge processing is decentralised. This new concept is particularly
well adapted for numerical simulation tools, typically in engineering applications that
mainly require pure numerical behaviour, and sometimes locally intelligent behaviour.
The proposed approach is illustrated in a simple example.

1. Introduction

The purpose of this paper is to describe an intelligent-object concept. Before describing
those intelligent objects, the need for assistance within finite element software is
discussed. Then, the intelligent-object concept is described; defining the intelligent
objects, their associated knowledge, and finally how such objects process their own
knowledge. An intelligent user interface managing its own options follows as an
illustration of the proposed approach. Lastly, conclusions are drawn.

1.1. NEED FOR ASSISTANCE IN FINITE ELEMENT CODES

Finite element codes are complex tools dedicated to numerical simulation of difficult
problems. So, it may take a user.a year.or.more to learn effectively and efficiently how
to use the various options and capabilities of a large FEA program [1], for instance.
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However, inexperienced engineers are often told to analyse structure without having the
proper knowledge of the underlying mechanics governing their behaviour. Often, this
leads to inappropriate structure modelling and interpretation of results. Consequently,
modelling assistants may be useful to novices who are not familiar with all modelling
details, and often not in a position to evaluate the adequacy of the various models they
must build. Furthermore, finite element assistants can reduce the number of tasks
delegated to the user, allowing a short turn-around time for analysis. Different types of
knowledge-based systems can help the user of finite element packages: intelligent
modules helping to find particular program options, data entry procedure, suitable
solutions, etc.; specification and modelling aids helping to translate appropriate element
types, material models, boundary conditions, mesh density; results evaluation and
design change proposals.

1.2. HISTORICAL OUTLINE OF FINITE ELEMENT ASSISTANTS

The pioneer of finite element assistants is SACON [2], standing for Structural Analysis
CONsultant. It helped the user of a commercial package with the selection of an
appropriate analysis strategy. This research showed the feasibility and the potential of
using knowledge-based system coupled with FE software. Among this literature,
Cagan’s [3] and Fink’s [4] work deserve the most attention; they report on
developments that combine object-oriented and rule-based programming with finite
element programs. Although as not broad as SACON, PLASHTRAN (PLate And SHell
sTRuctural ANalysis) [3] has the advantage of providing a more user-friendly
interaction resulting from its design, that follows the logic of the expert instead of
following the logic of the shells. PLASHTRAN enables the user to take shortcuts,
which force the system to make the appropriate assumptions in order to preserve
consistency within the system. But, unfortunately, its conclusions pointed out the
difficulty of integrating expert systems and FE packages essentially due to incompatible
development tools.

2. Intelligent-object concept
1.3. DISTRIBUTED OBJECT-ORIENTED ARCHITECTURE

Failure in using numerical simulation tools with knowledge-based systems is due to the
lack of interoperability that mainly results from the design of usual Al environments, as
well as their language of implementation. Most commercial Al environments are written
in LISP, which is a widespread language in Al community, but not in the scientific one.
Furthermore, Al environments provide a centralised reasoning process with a single
inference engine working on a single knowledge base (set of rules). This means that the
expert system is always activated whatever action is to be performed; therefore the
computational efficiency which is of great importance in numerical simulation tools, is
highly penalised. Even though in such systems, knowledge can be organised in order to
eliminate irrelevant rules from knowledge processing, this approach is not appropriate
for finite element codes.
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The proposed concept is based on the object-oriented approach that provides a
common paradigm for the development of numerical simulation tools coupled with Al
tools. It renders possible the integration of multiple rule-based expert systems into a
given application, instead of developing an application within a prescribed environment,
as illustrated in Figure 1. Knowledge bases (sets of rules) are distributed over the
application and knowledge processing (inference engines) is decentralised. The main
advantage of this approach is that only a limited amount of knowledge is activated
simultaneously, i.e. that related to the action to be carried out. Resulting numerical
simulation applications are able of behaving as pure numerical packages ignoring
knowledge, or as hybrid applications capable of activating some knowledge when
needed. Therefore, a good level of efficiency is achieved.

Artificial Intelligence
Environment

Finite Element
Application

1 = .
Inference engines
+

rules

\»\.

Inference cngmc;] Finite Element Inference engines )
+ Y i
Application J

rules rules
Inference engines
+ [
rules

Figure 1. Centralised Vs Distributed object-oriented intelligent architecture

1.4. DEFINITION OF AN INTELLIGENT OBJECT

The intelligent-object concept relies on a hybrid definition of objects integrating
declarative knowledge and reasoning capabilities within a simple blackboard
architecture [5]. Such a hybrid object consists of data and methods that represent a usual
object, and rules and inference engines that represent an expert object.

These objects communicate through messages and share knowledge through the
blackboard. Intelligent behaviours of these objects result from the action of knowledge,
and can be invoked within usual methods as well as in rules. Intelligent objects provide
their hosted application with an architecture in which knowledge is distributed and
knowledge processing decentralised.



146

1.5. RULES OF AN INTELLIGENT OBIJECT

Associating rules with objects endows them with the same status as the usual methods
[6]. So, in the proposed approach, rules are considered as pseudo-methods working on
the state of an object. Thus, like in any method, the internal data of an object can be
directly accessed in its rules, while encapsulated data (variables of other objects) are
accessed by message passing. Consequently, such a definition fully respects the state
encapsulation of the object with which rules are associated. The following kinds of rules
are distinguished:

e rules of instances, which are activated by every instance of a class;

e private rules, which are rules of instances with a scope limited to the instances of
class with which they are linked;

e identity rules, which are associated with a single object, and dedicated to
reinforcing the identity of that object. Such rules are very useful to distinguish
exceptional behaviour of a particular instance of a class;

e inherited rules, which are rules of instances of superclasses from which private
rules of superclasses have been excluded;

e polymorphic rules, which override inherited rules.

Rules are defined as follows:

RULENAME: name

CLASS_LINK: classname or OBJECT_LINK: objectname
ACCESS: Public or Private

IF premises THEN conclusions [SHARED or NOTSHARED]
COMMENT: [optionnal]

in which

e  aname represents the name of the rule.

o a member (classname or objectname) identifies a class or an object, with which this
rule is associated.

e a keyword (public or private) facilitates rule hiding and defines the inheritance
scheme. A public rule is a rule that can be inherited, whereas a private one has
influence restricted to the specific object or to the class with which it is associated.

e [F... THEN... is the body of the rule consisting of premises and conclusions. Two
kind of conclusions can be distinguished; the ones that the owner of the rules shares
with other intelligent objects through the blackboard. Hidden conclusions represent
local information limited to the knowledge base of the owner.

e and some optional comments.

The contents of rules are analysed as the contents of methods, so rules may be
considered as particular methods called pseudo-methods. Notice that these pseudo-
methods have no arguments. If external data is needed in conclusions or premises, it can
be acquired by interrogating the blackboard or by sending messages to other intelligent
objects.

Associating rules with objects provides a natural way of organising knowledge
hierarchically. Since rules are like methods, rules and methods are organised in the
same way. This means that the resulting hierarchy of rules is identical to the one of the
application as shown in Figure 2. Additionally, modifying the hierarchy of the



147

application automatically changes the organisation of rule in the same manner.
Therefore, both hierarchies always remain consistent, meaning that the hierarchy of
rules does not require specific management.

Inference engines Blackboard

- 4 ’
7 z '
| @D
Instantiate
|
|
| p L
. - _1|_ _ Exchange -
Object-Oriented _ Rules _
Finite Element | /
! Application /C;l/
e b
/ / '
_ _. e
_.\cmi Define /
messages : '\
; 2 N\
4 |)|;|]n:_r / ~
y with the user
K Event N J
Identical hierarchies

Figure 2. Hierarchy of intelligent object-oriented application

Any intelligent object is capable of constructing its own set of rules with respect to
object-oriented features such as identity, inheritance, and polymorphism. Therefore, the
set of rules that can be applied to an object consists of: (i) the rules inherited from
superclasses of the object’s class, (ii) rules associated with the object’s class, and (ii)
rules characterising the object’s identity. Notice that polymorphism is taken into
account automatically by collecting rules in this order, since a rule of a subclass
overrides the rule of one of its superclasses having the same name.

1.6. EMBEDDED REASONING

Knowledge processing is kept under the control of an object, that instantiates an
inference engine in order to process its knowledge. This instantiated process dies when
its task is over. Thus, reasoning mechanisms are local concepts implemented by
temporary-objects.created.only.-when.needed This decentralised knowledge processing
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reinforces data encapsulation and forces objects to communicate by sending messages
in order to exchange knowledge. A simple blackboard architecture introduces more
flexibility, by providing a common area that can be freely accessed by objects for
writing and reading knowledge [7,8].

Every intelligent object has its own set of rules on which it activates reasoning as
shown in Figure 2. When an object receives a message requiring activation of
knowledge, it instantiates first a reasoning process on its own rules; then, if needed, it
interacts with its environment during the reasoning. The object’s environment consists
of a privileged partner, the blackboard, to which the requests are sent in priority, and of
other intelligent objects, with which co-operation may occur, and finally of the user.
Such reasoning modes enable an object to activate purely local reasoning processes, or
completely co-operative ones involving other objects and the user.

The hierarchy of the inference engines shown in Figure 2 is an object-oriented
implementation of search algorithms, and therefore is independent of the hierarchy of
the application.

3. Illustration

The simple example that follows is extracted from Bomme’s thesis [5]. In this work, the
intelligent-object concept was developed in C++ from scratch, meaning that the
implementation required the development of an object-oriented propositional expert
system (rule parser and inference engines) and of a class providing the capabilities of a
generic intelligent object (class IntelligentObject). This generic object provides its
subclasses with capabilities of activating inference engines on rules. In this illustration,
class IntelligentUserInterface was created as a subclass of IntelligentObject in order
to maintain the consistency of data in non-linear finite element software for rock and
soil mechanics. The main issue is first to provide the user with the minimal user
interface options for objects such as materials and numerical algorithms according to the
existing input, and also to be capable of recovering data consistency whatever changes
are carried out. Hereafter, it is described how a simple object, i.e. an elastic soil material
manages its user interface.

Let us assume that the adopted formulation for elastic soil materials accommodates
two-phase problems and integrates creep, heat, and humidity migration phenomena.
Figure 3 shows an elastic soil material defined by three parameters (Young modulus,
Poisson ratio, and Unit weight), some material properties (geometry, initial state, creep,
heat, and humidity), and a button to check the consistency of the object.

This object is an instance of class ElasticSoil located in the hierarchy given in
Figure 4. All classes of this hierarchy are derived from class IntelligentUserInterface
that takes into account the specificity of the application and provides the appropriate
reasoning capabilities and knowledge management.

Figure 5 shows how rules can be associated with classes. NoGeometry is associated
with class ElasticSoil, and hides the Geometry button when the analysis is a
deformation one. ShowResource(...) is a method of class IntelligentUserInterface, the
argument of which identifies the resource, i.e. the button to be hidden. This method is
inherited by the subclasses, of IntelligentUserInterface, i.c. by ElasticSoil. NoFlow is
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associated with class AbstractMaterial and hides the Seepage button. As a subclass of
AbstractMaterial, ElasticSoil inherits NoFlow.

= ELASTIC SOIL MATERIAL

[T Check local consistency

Elastic Parameters -
[Geome!ry... Initial state
Young's modulus !
Poisson ratio Seepage... l Creep.. W

Unit weight ]

‘ Heat... | lHumidiiy..]

=

Figure 3. User interface for an elastic soil material

IntelligentObject
IntelligentUserInterface
AbstractMaterial
Material
ElasticMaterial
ElasticSoil
ElasticStructure

Figure 4. Partial hierarchy of materials

RULENAME: NoGeometry RULENAME: NoFlow
CLASS_LINK: ElasticSoil CLASS_LINK: AbstractMaterial
ACCESS: Public ACCESS: Public

IF AnalysisType = “Deformation” IF AnalysisType = “Deformation”

THEN @HideResource(IDC_GEOMETRY) THEN @HideResource(IDC_SEEPAGE)

Figure 5. Example of rules associated with an ElasticSoil object

Figure 6 illustrates how an object can activate its rules within methods. Here, an
elastic soil processes its set of rules to update the options of its user interface when it is
created. The options that are consistent with the current user’s input, are displayed by
the method Onlnit() shown in Figure 6.

ShowModelState() initialises the variables depending on the internal state of the
object: here the elastic parameters. Then, a forward reasoning is carried out on the
object’s rules in order to take into account the influence of the environment. In the
present illustration, this will determine which of the material properties buttons are
consistent_with_the_existing _knowledge. Furthermore, the checking local consistency
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button visible is hidden. This button allows the user to recover the consistency of the
object when inconsistency is detected. When an object is created, consistency is always
achieved.

Void ElasticSoil::OnlInit() {
ShowModelState() Show the internal state
Deduce() Update the user interface

Figure 6. Source code of method Onlnit()

4. Illustration

This paper proposed a new approach for the integration of rules into objects. This leads
to the development of an intelligent-object concept, in which objects have a hybrid
definition consisting of data and methods with rules and reasoning processes.
Associating rules with objects automatically distributes the knowledge over objects, and
leads to a natural way of organising knowledge, which is induced from the hierarchy of
implementation of the application. Additionally, these objects control the activation of
their own knowledge. Reasoning processes are decentralised, and this approach allows
multiplicity of reasoning mechanisms. To conclude, the described model is well adapted
for numerical simulation tools, which mainly require computational power, and
occasionally local reasoning. Obviously, this methodology can be used in any type of
object-oriented applications. The feasibility of the approach is demonstrated on a simple
example of management of user interface in finite element software.
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1. Abstract

We present an application of object-oriented approach in the context of distributed
computing in the field of structural engineering problems. In this work, conducted in the
frame of a general purpose finite element code, we consider two types of distributed
algorithms: the cooperation of heterogeneous computing systems and an algorithm for
distributing the resolution of the finite element problem. In the first case, the major
issue is the transparent distribution of the data base involving data structures and
algorithms. In the first part of the present work, we present DDSM (Distributed Data
Structures Manager) dealing with this first issue. The second case addressed is that of
solution of linear systems by a domain decomposition direct method.

2. Introduction

The maturity of the field of computational engineering is such that the user has to deal
with a growing complexity of individual software components. The simulation process
involves a number specialized tools such as pre- and post-processors, linear, non linear
and dynamic solvers or auto-adaptive mesh generators. On the hardware side, multiple
architectures are available: networks of RISC processor systems, vector processor
systems, shared memory multiprocessor systems, massively parallel systems, networks
of workstations and arrays (or clusters) of shared memory systems.

These two aspects put to evidence the need for new programming paradigms. An
object oriented approach permits.one. to partition programs into manageable pieces that
closely match the concepts of computationa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>